A First Look at Android Malware Traffic in First Few Minutes

Zhenxiang Chen*, Hongbo Han*, Qiben Yan', Bo Yang*, Lizhi Peng*, Lei Zhang*, and Jin Lit
*Shandong Provincial Key Lab of Network based Intelligent Computing
University of Jinan
Jinan, Shandong, China, 250022
TShape Security
Mountain View, CA, USA, 94040
j5Guangzhou University
Guangzhou, Guangdong, China, 510006

Abstract—With the advent of mobile era, mobile terminals
are going through a trend of surpassing PC to become the most
popular computing device. Meanwhile, the hackers and virus-
writers are paying close attention to the mobile terminals, es-
pecially the Android platform. The growing of malwares on the
Android system has drawn attentions from both the academia
and security industry.Recently, mobile network traffic analysis
has been used to identify the malware. But due to the lack of
a large-scale malware repository and a systematic analysis of
network traffic features, the existing research mostly remain
in theory. In this paper, we design an Android malware traffic
behavior monitoring scheme to capture traffic data generated
by malware samples in a real Internet environment. We capture
the network traffic from 5560 malware samples in the first 5
minutes, and analyze the major compositions of the traffic data.
We discover that HTTP and DNS traffic are accounted for more
than 99% on the application layer traffic. We then present
an analysis of related network features: DNS query, HTTP
packet length, ratio of downlink to uplink traffic amount, HTTP
request and Ad traffic feature.Our statistical results illustrate
that: (1) more than 70% malwares generate malicious traffic
in the first 5 minutes; (2) DNS query and HTTP request can be
used to identify the malware, and the detection rate reaches
69.55% and 40.89% respectively; (3) Ad traffic can greatly
affect the malware detection. We believe our research provides
an in-depth analysis into mobile malwares’ network behaviors.

Keywords-malware; traffic behavior; traffic analysis;

I. INTRODUCTION

The Internet usage of mobile phones has already surpassed
that of PC. Meanwhile, the security problem of mobile phone
has become a general concern of the industry. Given the
rapid growth of Android malwares, there is a pressing need
to mitigate or defend against them effectively. Researchers
have spent a significant amount of efforts to characterize
malwares on mobile application markets [1]. Most of them
have applied static or dynamic analysis techniques on a large
number of applications in an attempt to identify malwares.

However, to provide real time analysis of application
behaviors are too resource consuming to be deployed on
smartphones. Also, despite all of the existing efforts, the
extent to which the mobile ecosystem been corrupted by
mobile malwares is not well understood. Recently, some re-
searchers begin to focus on network level analysis of mobile

malwares using traffic from a wireless access network or
cellular network. Nevertheless, without a deep understanding
of the malware traffic characteristics, it is hard to develop an
effective and practical mitigation solution. To make things
worse, the research community at large is still constrained by
the lack of a comprehensive mobile malware traffic dataset
to start with.

In this paper, we report our results on the collection and
characterization of Android malware traffic on smartphone.
We employ active traffic generator and passive sniffers on
the network to record all inbound and outbound traffic.
Given the legal consequences of actively deploying a large
number of malware samples on the real network environ-
ment, we must control the risk strictly. The results in this
paper are based on the datasets from a recent study called
Drebin [2], which consists of 5560 malware samples (177
families). We deploy and capture the packet-level traces
in the first few minutes to get a traffic dataset of about
500.4MB size. Then, we dig more deeply into the traffic
dataset and uncover a number of important insights and
features regarding malicious traffic behaviors. This paper
mainly makes the following contributions:

e Design and implement an Android malware traffic
generation and collection scheme.

o Use a real world dataset of 5560 malware samples to
capture their network traffic traces.

o Make a first look at the Android malware traffic in the
first few minutes and analyze its characteristics.

e Get a list of Android malwares target IP, CNAME,
malicious domains, generate the blacklist and prepare
for malware detection.

II. METHODOLOGY

To capture and analyze Android malware network traf-
fic, we design a malware traffic generation and capturing
platform. Our method employs a traffic monitor platform to
monitor traffic, and then run a large number of Android mal-
ware samples on our platform. We find some key elements
that will affect the traffic generation, based on which we
design automated traffic generation and collection algorithm.
In the following sections, we will discuss the methodology
in detail.

Table I: Top 24 families in our dataset(number > 25)

[ID [FamilyName [Num [[ID | FamilyName [Num |
1 Fakelnstaller 925 13 | ExploitLinuxLotoor 70
2 DroidKungFu | 667 14 Glodream 69
3 Plankton 625 15 MobileTx 69
4 Opfake 613 16 FakeRun 61
5 GinMaster 339 17 SendPay 59
6 BaseBridge 330 18 Gappusin 58
7 Iconosys 152 19 Imlog 44
8 Kmin 147 20 SMSreg 41
9 FakeDoc 132 21 Yzhe 37
10 Geinimi 92 22 Jifake 29
11 Adrd 91 23 Hamob 28
12 DroidDream 81 24 Boxer 27

A. Andriod Malware Dataset

In our experiment, we use a dataset of real world Android
malwares. The dataset comes from Drebin project [2]. Ad-
ditionally, it includes all samples from the Android Malware
Genome Project [1]. After removing the Adware samples, the
final dataset contains 5,560 malware samples. An overview
of the top 24 malware families(malware number excess 20)
in the dataset is provided in Table I including several families
that are still being actively distributed in application markets.
Note that only the top 24 families are displayed.

B. Traffic Monitor Platform

In order to get malware traffic traces in a real network
environment, we design an active traffic generation and
monitoring platform. As shown in Figure 1, the platform
consists of four parts: foundation platform, traffic generator,
traffic collector and network proxy/firewall.

Foundation platform is based on Android Virtual De-
vice (AVD) [3], with the debugging tool as An-
droid Debug Bridge(ADB). In the meantime, we provide
Samsung Glazy S2 to capture traffic and deal with the
abnormal operation Apps. This foundation platform provides
a basic Android simulation environment and command line
mode of interaction, and it could realize some basic func-
tionalities: creation, installation and operation.

The traffic generator is designed to install and activate
malware samples to generate traffic traces automatically,
which consists of two components: automatic traffic genera-
tor and malware execution controller. Automatic traffic gen-
erator implements automatic installation and activation of the
malware. Malware execution controller uses monkeyrunner
[4] that has an API to control the malware execution path.

The traffic collector is designed to capture the inbound
and outbound traffic automatically using tcpdump, and we
employ traffic mirror technology to mirror traffic that pass
through the gateway to a server.

A network transport proxy/firewall was deployed between
the Internet and malware running environment to monitor
and control the attack behavior.

C. Traffic Generation Analysis

By analysis, we find that installation, INTERNET permis-
sion, activation and aborting are four key elements that will
directly affect the malware running and traffic generation

Internet @

| <
i 51 Mirrored TrafTic
| Traffic Collector

Traffic Generator

Figure 1: Malware traffic generation and capturing platform

Malware Samples

Yes @
Traffic
collection No

[Reboot | [sms | [- |
£7

-
o
£7 £2
Traffic Traffic Traffic Traffic
collectios collection / \¢ollectio: ollectio:

Figure 2: The automatic malware traffic generation workflow

behaviors. The top level work flow of traffic generation is
shown in Figure 2. More details are illustrated as follows.

1) Installation: The existing methods Android malwares
used to be installed into users’ phones can be categorized
into three main social engineering techniques, i.e., repack-
aging, update attack and drive-by download [1]. For most
of malwares, the malware installation happens before the
malware traffic generation, except for a small portion of the
malware which only includes an update component that will
fetch or download the malicious payloads in runtime.

2) The INTERNET Permission: For Android Apps with-
out root exploits, their capabilities are strictly constrained by
the permissions users grant to them.The statistical result of
permissions for the selected 5560 samples is shown in Figure
3. Here we list the top 15 of most commonly used sensitive
permissions. As we expected, 5344 samples (96.2% of 5560
samples) use the INTERNET permission, only 216 samples
(3.8% of 5560 samples) are not requesting the INTERNET
permission in our dataset.

3) Activation: Malwares can activate themselves
in several ways, among all available system events,
BOOT_COMPLETED is the most popular one to existing
Android malware, and 83.3% of the total 1026 samples
listen to this event [1]. This is not surprising as this
particular event will be triggered when the system finishes
its booting process which is a perfect time for malware to
kick off its background services. This is one of the main

INTERNET
READ_PHONE_STATI
WRITE_EXTERNAL_STORAGE]
ACCESS NETWORK_STATI
SEND_SMS}
RECEIVE_BOOT_COMPLETED)
ACCESS WIFI_STATI
RECEIVE_SMS}

WAKE_LOCK

READ_SVIS]
ACCESS_COARSE_LOCATIO!
ACCESS FINE_LOCATION
VIBRATE]

READ_CONTACT:!
WRITE_SMS]

Figure 3: The top 15 permissions requested by 5560 malware
samples

reasons that we look into the malware traffic only in the
first minutes. Also, the activation method used by most of
malwares in our dataset is BOOT_COMPLETED.

4) Aborting: Running a malware on the AVD, aborting is
the main abnormal phenomenon which affects Internet traffic
generation. There are about 200 samples (3.6% of all 5560
samples) aborting their execution immediately after installa-
tion. These malware are installed on Samsung Glazy S2,
which is based on Android 2.3. However, most of them still
abort when running. After checking their APK files, we find
that the main reason is that some malwares cannot run on
Android 2.3, such as DroidDeluxe.

Based on the analysis above, for the elements of non-
active, aborting and some other elements such as failed
installation and failed execution etc., we have no specific
collection mechanisms. We will improve the traffic collec-
tion platform to consider those elements in the future work.

D. Automatic Traffic Generation and Collection

In order to capture 5560 malware samples’ traffic auto-
matically, we need an automated script to implement the
automatic installation, operation, activation and collection.
Based on the analysis above, we design an automated traffic
generation and collection algorithm. Primarily, we need to do
some preprocessing work, includes decompiling APK files to
get the package and activity name, then writing APK name,
package name and activity name into a txt file line by line.
More details are shown in Algorithm 1.

III. EXPERIMENT AND RESULT

A. Basic Statistics of Traffic Data Set

Based on the designed platform, we collected the network
traffic of 5560 malware samples in first 5 minutes. The
captured raw data include many irrelevant traffic, such as
SSDP, DHCP, ARP, NBNS, IGMP, SMB, which are all removed
by applying the Wireshark filters. The basic traffic statistical
information of the top 24 families as in Table I, is shown in
Table II. Each of these top 24 families has sample number
> 25, with a total of 4785 samples (86.06% of all). Further,
we analyze the basic traffic breakdown by the application
layer protocols which is shown in Table III, and find that
SSL only take a very small part. The major traffic types are
HTTP (89.62%) and DNS (10.24%) traffic.

Data: the malware in the same family
Result: capture the traffic generated by the malware

while not at the end of the txt file do
read the txt file line by line to get malware name,

package name and activity name;

if the malware APK file, package name and activity
name all exist then

create an AVD;

start up AVD and install the malware;

reboot this emulator;

read the package name and activity name to
start up the malware;

start tcpdump to capture traffic;

delete this AVD and move to the next;

else
‘ write the error information into the log file;
end

end
Algorithm 1: The automatic traffic generator algorithm

Table 111: DNS/HTTP/SSL traffic proportion in the top 24 families

[FamilyName [DNS [HTTP | SSL |
Fakelnstaller 0.78% 15.59% | 0.19%
DroidKungFu 0.25% 3.54% 0.00%

Plankton 2.03% 26.07% 0.00%
Opfake 11.01% | 2527% | 0.63%
GinMaster 5.45% 16.38% | 0.01%
BaseBridge 3.66% 24.15% | 0.00%
Iconosys 5.40% 24.31% 0.00%
Kmin 4.52% 5.50% 0.00%
FakeDoc 0.90% 7.11% 0.00%
Geinimi 7.58% 19.22% | 0.00%
Adrd 4.36% 31.37% | 0.23%
DroidDream 3.83% 10.54% 0.00%
ExploitLinuxLotoor 0.60% 3.56% 0.00%
Glodream 4.60% 15.76% | 0.00%
MobileTx 1.52% 34.53% | 0.00%
FakeRun 4.19% 32.07% | 0.00%
SendPay 4.22% 29.20% | 0.00%
Gappusin 1.75% 11.73% 0.00%
Imlog 3.68% 18.30% | 0.00%
SMSreg 0.41% 3.78% 0.00%
Yzhc 10.09% 0.07% 0.00%
Jifake 0.47% 0.08% 0.00%
Hamob 0.92% 9.37% 0.00%
Boxer 1.47% 5.80% 0.00%

Zhou et al. [1] examines the remote control functionality
of the malware payloads. They find that 93.0% of the sam-
ples turn the infected phones into bots for remote control.
Specifically, almost all of these samples that use the HTTP-
based web traffic to receive bot commands from their C&C
servers. Furthermore, they also find that most C&C servers
are registered in domains controlled by attackers themselves.
So we will primarily focused on the DNS and HTTP traffic
in this paper.

B. DNS Traffic Analysis

In this section, we statistically analyze the top 24
families’ DNS queries. For simplicity, we select the top

Table II: Basic traffic data information in the top 24 families; The “RS” represents the raw traffic data size, “PN” represents the packet
number after preprocessing, “PS” represents the corresponding packet size, “AL” represent the average length, “OIN” represents the total
number of outbound and inbound packets, “TS” represents the corresponding total size, “ON”(“IN”) represents the outbound (inbound)
packets number, “OS” (“IS”)represents the corresponding outbound (inbound) packets size, “OAL” (“IAL”) represents the outbound

(inbound) packets average length.

’ FamilyName I RS(yte) Preprocess Data [Outbound and Inbound Data | Outbound Data | Inbound Data |
[PSyte) | ALGyie) | ON | TSkye | ON OSbye) | OALGy®) | N | _IShye) [TAL(y© |
F: 28891098 5791 2661096 919.05 5606 2638148 2670 328033 24572 2936 2310115 1573.65
DroidKungFu 241206621 244015 220744514 1809.27 240296 220211261 81007 9071299 223.96 159289 211139962 2651.03
Plankton 47837937 111577 29613926 530.82 107514 29009385 57761 10074698 348.84 49753 18934687 761.15
Opfake 18145471 7085 1724674 486.85 4512 1534742 2296 383653 334.19 2216 1151089 1038.89
GinMaster 22251568 23701 7330829 618.61 19977 6935946 10460 1866191 356.82 9517 5069755 1065.41
BaseBridge 15924586 12552 3527586 562.08 11549 3398188 6739 1279561 379.75 4810 2118627 880.93
Iconosys 5410930 1296 264282 407.84 1158 249947 689 107116 310.93 469 142831 609.09
Kmin 7281927 8507 2787177 655.27 7580 2658656 3957 574358 290.3 3623 2084298 1150.59
FakeDoc 27087667 45068 22667981 1005.95 43403 22465052 19953 2477636 248.35 23450 19987416 1704.68
Geinimi 3602595 2168 405290 373.88 1970 374578 1137 164238 288.9 833 210340 505.02
Adrd 4070859 4747 916891 386.3 4265 839238 2551 415861 326.04 1714 423377 494.02
DroidDream 3122966 1392 536753 771.2 1236 516410 609 87265 286.58 627 429145 1368.88
ExploitLinuxlotoor 3249874 2191 1381472 1261.04 2143 1373204 930 115500 248.39 1213 1257704 2073.71
Glodream 2813616 2560 800788 625.62 2342 763967 1257 182634 290.59 1085 581333 1071.58
MobileTx 4650799 7310 2504225 685.15 6993 2466264 4198 779809 371.51 2795 1686455 1206.77
FakeRun 3321622 4774 928055 388.8 4488 889151 2503 453336 362.23 1985 435815 439.11
SendPay 2542003 1531 274828 359.02 1415 263100 864 127448 295.02 551 125652 492.38
Gappusin 5055953 6969 2955707 848.24 6610 2904108 3343 494288 295.72 3267 2409820 1475.25
Imlog 2214692 1098 325723 593.3 992 313752 528 92449 350.19 464 221303 953.89
SMSreg 4959810 5964 3765050 1262.59 5876 3749018 2381 291571 244.91 3495 3457447 1978.51
Yzhc 1789093 1617 687623 850.49 764 618031 277 25478 183.96 487 592553 2433.48
Jifake 1183356 507 331762 1308.73 495 330074 199 23904 240.24 296 306170 2068.72
Hamob 9417301 14470 8599747 1188.63 14061 8520617 5811 823083 283.28 8250 7697534 1866.07
Boxer 758419 284 170491 1200.64 270 167980 118 13919 235.92 152 154061 2027.12
Total 466790763 517174 315906470 495515 313190817 212238 30253328 283277 282937489

3 queries in the same family, which account for more
than 80% of all. We use the URLvoid [5] includes Dr.Web,
TrendMicro, AVGThreatLabs and so on more than 40 kinds,
which is more accurate than a single scanning engine.
Detection results is shown in Table IV, “\/” means the
query is detected as a malicious query. Here we give
several examples(Fakelnstaller,Droid KungFu,Plankton,

Opfake,GinMaster) in 5 families (3169 samples,
56.996% of all 5560). For example, waply.ru
in Fakelnstaller, app.wapx.cn in DroidKungFu,

www.apperhand.com, api.airpush.com, ad.leadboltapps.net
in Plankton, gagaOl.net, m — 00l.net in Opfake,
client.go360days.com in GinMaster, they account for
more than 85.67% of all queries that have been detected
as malicious queries. Actually, gaga0Ol.net has already
been confirmed to spy on the phone IMEI and other
personal information through connecting back to the
gaga0l.net/rq.php — 93.170.107.57 — Email. The other one
is the client.go360days.com in GinMaster. As TrustGo
announced in 2012, it was one of the remote control
servers. But on the other hand, some DNS queries that have
not been detected may also be generated by malwares. For
example, mobile.tz.com.cn and tx.com.cn in MobileTz, in
September 2011, are detected as an new Android riskware
by F-Secure, which will send user’s IMSI to the given
servers. As a statistical result, the DNS queries can be
used to help identify the malware behavior as a minimum
statistical probability of 69.55%.

C. HTTP Feature Analysis

1) HTTP Packet Length Analysis: According to the pack-
et lengths, HTTP packets can be divided into several intervals
as 20 — 39,40 — 79,80 — 159, 160 — 319, 320 — 639, 640 —
1279,1280 — 2559,2560 — 5119 and 5120—. We analyze
the HTTP packet length features (the distribution at various
intervals, average length, maximum length and minimum

length) in the top 24 families. Figure 4 shows the distribution
of the HTTP packet length within different intervals. The
interval follows a normal distribution, and most of the HTTP
traffic has the interval of 320 — 639 (at about 45%).

Next, we calculate the expectation and variance in the
same family. With respect to different intervals, we analyze
the packet number (which can be set as n;), and the total
packet number (set as [V;), where ¢ means the ith family. The
probability of the sample is p; = Kh , the sample mean in
the same interval is the sample value, which can be denoted

as X;; = w, j means the jth interval, 7 means the

total number of the intervals. The expectation F(X;) can be
calculated according to the following formula:

h
BE(X;) = ZP:‘ - Xij
=

After getting the expectation F(X;), the variance D(X;)
can be calculated as:

h
DIX) = g DXy — B(X)P?

Square root D(X;), we get the standard deviation o; =

D(X;), in Table V. We calculate the total 24 families’
HTTP length expectation and variance as 561.41 and 351.98,
which could be used as a benchmark to identify the malware.

2) Ratio of Downlink to Uplink Traffic Amount Analysis:
Downlink traffic means the response from the server to the
emulator(inbound data), and relatively uplink traffic means
the malware requests to the server(outbound data). As a
network behavior feature, we compute the ratio of downlink
to uplink traffic in Figure 5. PRatio represents the data packet
number ratio of downlink to uplink, BRatio represents the
byte ratio of all received to all sent data, x axis represent the

Table 1V: An overview of the top 3 DNS queries and identified malicious queries in the top 24 families

[FamilyName [Top query 1 [Result | Top query 2 [Result | Top query 3 [Result |
Fakelnstaller waply.ru v/ browser-error-page.ru V4 i.yangruiling.com
DroidKungFu app.wapx.cn Vi req.adsmogo appsrvl.madserving.cn

Plankton www.apperhand.com NV api.airpush.com v ad.leadboltapps.net v
Opfake gaga0l.net v 001.net
GinMaster client.go360days.com v cn.papayamobile.com connect.papayamobile.com
BaseBridge dev.adtouchnetwork.net vV b3.8866.0rg IV b4.cookier.org
Iconosys smsreplier.net v blackflyday.com graph.facebook.com
Kmin transit.Skzk.com transit.5j5w.com jujoy.Sy3g.com
FakeDoc chart.googleapis.com moba.rsigma.com bongacams.com v/
Geinimi google.funimoe.com www.winpowersoft.com data.flurry.com
Adrd log.android188.com log.meego91.com v adrd.taxuan.net v
DroidDream www.gstatic.com kiu6.com mm.admob.com
ExploitLinuxLotoor www.umeng.com r.admob.com IV mm.admob.com
Glodream www.gstatic.com cfg.adsmogo.mobi cfg.adsmogo.com
MobileTx mobile.tx.com.cn tx.com.cn img.tx.com.cn V4
FakeRun ad.leadboltapps.net Vi api.airpush.com vV www.droidsettings.com
SendPay api.go108.cn d.wiyun.com
Gappusin app.wapx.cn NV ads.wapx.cn v www.umeng.com
Imlog wp.ysler.com www.imnet.us v waps.ysler.com
SMSreg api.airpush.com v ro.plusl.wapstart.ru IV www.apperhand.com v
Yzhe domaindev.51widgets.com admin.51widgets.com IV axy.waplove.cn v/
Jifake crl.globalsign.com
Hamob stat.appsgeyser.com ads.appsgeyser.com rq.vserv.mobi
Boxer media.admob.com www.gstatic.com data.flurry.com

Probability

40-79 80-159 160-319 320-639

Intervals

HTTP packet length distribution of the top 24

640-1279 1280-2559 2650-5119

Figure 4: The
families

downlink traffic, y axis represent the uplink traffic, the red
line represents x = y, means the downlink traffic equals to
the uplink traffic. Comparing Figure 5(a) with Figure 5(b),
we find the byte size ratio in most families is above the
red line in Figure 5(b), which means uplink traffic amount
is greater than downlink traffic amount,which also means
most malware upload data more frequently with larger traffic
volume. However, in Figure 5(a), we can see that the packet
number ratio in most families is growing along with the red
line.

3) HTTP Request Analysis: To analyze the compositions
of the HTTP traffic, similar to DNS traffic analysis, we select
the top 5 HTTP requests of the top 24 families. First, we still
use URLvoid [5] as the malicious detection engine. The result
is shown in Table VI and the “,/” represents the malicious
HTTP requests detected by scanning engines. We analyze
the HTTP malicious traffic proportion in the same family.
As can be seen from the red part on Figure 6(a), we find
that in different families, the malicious HTTP requests are
quite different. This indicates that HTTP request can help
identify the malware behavior. However, it is not so ideal
to only use HTTP requests. Some malware families do not

Table V: The average length/expectation/variance/standard devia-
tion of HTTP packets in the top 24 families

[FamilyName [Average Length(byte) | E(X,;) [D(X:) | o3

Fakelnstaller 1346.64 673.32 307650 554.66
DroidKungFu 1119.68 559.84 108900 330
Plankton 1253.40 626.70 121530 348.61
Opfake 2013.24 1006.62 218920 467.89
GinMaster 1143.84 571.92 300620 548.29
BaseBridge 914.20 457.10 26961 164.20
Iconosys 1019.98 509.99 134240 366.39
Kmin 692.09 346.04 94061 306.69
FakeDoc 1121.69 560.85 73923 271.89
Geinimi 973.61 486.81 105170 324.30
Adrd 828.81 414.40 34102 184.67
DroidDream 1854.79 927.40 343040 585.70
ExploitLinuxLotoor 848.28 424.14 100110 316.40
Glodream 882.67 441.33 98242 313.44
MobileTx 1208.51 604.26 56254 237.18
FakeRun 1031.57 515.79 53806 231.96
SendPay 810.60 405.30 10993 104.85
Gappusin 1028.77 514.39 64404 253.78
Imlog 1241.73 620.87 78276 279.78
SMSreg 837.80 418.90 127550 357.14
Yzhe 506 253 0 0
Jifake 506 253 0 0
Hamob 1230.60 615.30 119380 345.51
Boxer 1412.29 706.14 141140 375.69
Total 1076.12 574.79 123260 351.08

have any HTTP request, which means only by estimating
the HTTP request to identify malware is not so effective.
We analyze the proportion of malicious HTTP requests, and
find that 40.89% of HTTP requests in our top 24 families
are malicious.

But in fact, these scanning engines cannot detect all
malicious requests. As shown in Figure 6(a) the green part,
we analyze the proportion of malicious requests that are not
recognized by scanning engines. Among these malwares that
are not identified, some even account for a major part in the

o
R

X=Y

o
e

Y: Theuplink traffic
o
G
T

o
e

© HTTP packets number ratioof downlink to uplnk traific

°
2

.
P

I | I | I | I
0.05 01 0.15 02 0.25 03 035 04
X: Thedownlink traffic

(a) Packet number ratio of downlink to uplink traffic amount

Y: Theuplink traffic
o o
2 o n
F——F
I I I

o
g
L

* Bytessizeratio of downlink to uplink traffic

=4
=1
ol
o

I I I I I I I
0 01 02 0.6 07 08

03 04 05
X: The downlink traffic

(b) Byte size ratio of downlink to uplink traffic amount

Figure 5: The ratio of downlink to uplink traffic amount in top 24 families

same family. For example, in K'min family, HTTP requests
transit.5jbw.com, jujoy.5y3g.com, transit.zhiyule.com are
both malicious (which accounts for 96.81%), which
transfer the user’s IMSI, phone number, SDK version
to the server. The other one is i.yangruiling.com in
Fakelnstaller(account for 4.12%), this site was found in
2012, it reads a series of encrypted characters from its file,
then composes the control server address i.yangruiling.com
after decryption. Another one is mlo6.com in DroidDream
(account for 6.45%), which is one of remote control servers.
Therefore, the scanning results are not completely reliable
according to our analysis.

In addition to analyze malicious HTTP requests, we also
analyze the other sources of the requests. We find that a
large part of the rest traffic are mobile Ad traffic, which
account for 34.59%. The Ad traffic will be discussed in
next section. Finally, for the rest HTTP request, including
some identifiable source traffic [6], such as Google traffic,
third-part traffic. Since they are out of the scope of this

paper, we put them into the other source traffic as the “x
representation in Table VI.

4) Ad Traffic Analysis: In this section, we analyze the
Ad traffic, which occupies a majority of all the HTTP traf-
fic(34.59%). First, we use the scanning engines to exclude
malware traffic. Then, we screen the Ad traffic according
to the research about Ad libraries, which is used in [7].
According to the information from CrunchBase (crunch-
base.com), we conduct IP address lookup, DNS and whois,
additional information and knowledge from public databases
to identify the type of traffic sources after resolving the
top-level domains of the network traffic in [6]. Finally,
we get the percentage of Ad traffic in the same family,
which is shown in Figure 6(b). Compared with Figure 6(a),
we discover an interesting phenomenon: if Ad traffic takes
a larger percentage of the traffic, the identified malicious
requests will have a smaller percentage of the traffic. For
example, in the DroidKungFu family, the Ad traffic per-
centage is 91.13%, but the malicious requests percentage
is only 8.87%, in contrast to Fakelnstaller, the Ad traffic
percentage is 0.00%, but the malicious requests percentage
reaches 89.69%. Because our samples are all malicious, It
seems that the amounts of Ad traffic will lower the detection
rate. Therefore, we think that these Ad traffic would cause
damage to users stealthily.

There are some exceptions, such as Geinimi and Imlog,
both have 0.00% ad traffic and the malicious requests per-
centage are 8.93% and 14.29%. Y zhc and Jifake(account
for 1.19% of 5560) have few HTTP requests. Furthermore,
after analyzing some Ad traffic sources in details, we find
that many are really malicious, for example, r.domob.cn in
GinMaster, it used a method to collect user information,
waps.ysler.com in Imlog has been hijacked to transfer to
other sites. In addition, comparing 69.55% (use DNS query
to identify malware behavior) to 40.89% (use HTTP request
to identify malware behavior), plus the result that Ad traffic
account for 34.59% in HTTP traffic, we can draw a conclu-
sion that Ad traffic would affect the malware detection to a
certain extent.

D. Malicious Network Feature Analysis

Based on the analysis above, we learn that the majority of
the traffic traces on the application layer are DNS and HTTP
traffic, which account for 10.24% and 89.62% in the top
24 families. Meanwhile, 69.55% DNS queries and 40.89%
HTTP requests are malicious, malware traffic (40.90%) and
Ad traffic (34.59%)are two major compositions of the HTTP
traffic. At the same time, some features could help us
understand the malware network behaviors better, and even
help identify the malware by using features like DNS queries
and HTTP requests, HTTP packet length, and the ratio of
downlink to uplink traffic amount. Of course, these features
are a part of many features which we will continue to
discover in our future work.

1) DNS Query and HTTP Request: Malicious DNS
queries and HTTP requests could be used to set up a blacklist,
showed in Table VII, we have the malicious URLs and
their corresponding IP addresses.Notably, we also count the
CNAME that corresponds to the same malicious IP. But since
these CNAME:s take a small part, we do not list them here.

2) HTTP Packet Length: HTTP packet length includes
the average length, maximum length and minimum length,
meanwhile, based on the HTTP packet length distribution,
we calculate its HTTP length mathematical expectation and
variance, Then, we make a comparison with the benchmark
values, and use their difference or ratio as a feature to
identify a malware.

3) Ratio of Downlink to Uplink Traffic Amount: Based
on the analysis about the ratio of downlink to uplink traffic

Table VI: An overview of the top 5 HTTP requests in the top 24 families; “4/” represents the recognized malicious requests,
the malicious requests not recognized by scanning engines,

Gy

represents the ad traffic,

g

“X” represents
represents the other source traffic.

[FamilyName | Top request | [Result | Top request 2 [Result | Top request 3 [Result | Top request 4 [Result | Top request 5 [Result |
Fakelnstaller 91.213.175.176 v/ waply.ru \ rukodelniza.ru * 91.213.175.148 v/ i.yangruiling.com X
DroidKungFu static.adwo.com * www.adwo.com * req.adsmogo.com * app.wapx.cn V r2.adwo.com *

Plankton ad net v/ api.airpush.com NV apperhand.com v/ phoneliving.com * searchmobile.com v
Opfake m-001 net X 62.109.21.90 X lerpoa.pz9.ru X 91.211.88.65 X prowap.biz. Vi
GinMaster www.google-analytics.com * ads.mobclix.com * gw.youmi.net * r.domob.cn * 12.adwo.com *
BaseBridge bé.cookier.co.cc:8080 v appsrv l.madserving.cn * dev.adtouchnetwork.net v b3.8866.0rg:3080 v req.adsmogo.com *
Iconosys smsreplier.net v/ blackflyday * 184.154.161.66 *
Kmin transit.5jSw.com X jujoy.5y3g.com X transit.zhiyule.com X crl.globalsign.com *
FakeDoc bongacams.com 4 tools.bongacash.com * ‘moba.rsigma.com * adserverKimia.es Vi cn.bongacams.com v
Geinimi ‘google.funimoe.com:8080 * getyourchadon.com * www.google-analytics.com * test.adpooh.com:80 Vi data.flurry.com *
Adrd ‘aw.youmi.net * ade.wooboo.com.cn I 222.186.14.13 O adrd.taxuan net v wap.casee.cn *
DroidDream www.gstatic.com * mlo6.com X glead: net * api.admob.com * mm.admob.com *
ExploitLinuxLotdoor Www.miidi.net * test.adpooh.com:80 V4 crl globalsign.com * 12.adwo.com * Www.umeng.com *
Glodream ade.wooboo.com.cn * Www.gstatic.com * Tebar.gicp.net Vi report.adview.cn * Teport.adview.cn *
MobileTx img.tx.com.cn X mobile.tx.com.cn X
FakeRun api.airpush.com \/ ad. net \/ www.youtube.com * www.droidsettings.com *
SendPay api.go108.cn * d.wiyun.com *
Gappusin app.wapx.cn Vi ads.wapx.cn Vi www.umeng.com * rdomob.cn * req.adsmogo.com *
Imlog wp.ysler.com * www.imnet.us v/ waps.ysler.com *
SMSreg ro.plus1.wapstart.ru \/ ro.plus1.wapstart.ru * smartsms.org * www.google-analytics.com * www.apperhand.com V
Yzhe crl globalsign.com *
Jifake crl.globalsign.com *
Hamob ads.appsgeyser.com * www.tdvision.com * stat.appsgeyser.com * b.adinch.com i www.battleon.com *
Boxer ‘media.admob.com * Wwww.gstatic.com * ‘googleads.g.doubleclick net * data.flurry.com * appstat. mmi.ru *

- De\eo\ed mancmusvequas
I- Not detected mancmusraquas

1234 5 6789 101112131415161718192021222324
Thetop 24 families

(a) The proportion of malicious HTTP request in the top 24 families

1 T T T T T T

T
[l The proporation of ad traffic | |

123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24
Thetop 24 families

(b) The proportion of ad traffic in the top 24 families

Figure 6: The proportion of the malicious and ad HTTP requests in top 24 families

amount, we know the packet number ratio would go along
the red line (means the downlink equal to uplink), while the
byte size ratio will be located above the red line.

4) Ad Traffic: Ad traffic account for most of all the
generated traffic in some malware families, and our findings
have shown that Ad would affect malware detection. For
these malicious Ad servers which have been confirmed, we
also put them into the blacklist.

In this paper, we have done an analysis about the traffic
generated by the malware. In our future work, we will extend
our work to compare with the legitimate traffic generated by
the benign Apps.

IV. RELATED WORK

The importance of mobile network is increasing with the
proliferation of mobile devices, especially on the Android
system. Previous studies have highlighted the weaknesses
of the Android security model [8]. These researches are
mostly based on static analysis, and open-source tools [9]
are used to decompile and disassemble the source code.
Recent studies focus on the malicious behaviors [10], these
researches all analyze the malware dynamically at run-
time. Meanwhile, several work have examined mobile device
network traffic to learn about the their general network
characteristics [11].

Network level analysis of malware behavior offers a
complementary means of characterizing and mitigating mal-
ware. Cheng et al. [12] designed SmartSiren to collect the
communication activity information from the smartphones.
But it’s impractical to run a agent on each smartphone.
Tenenboim-Chekina ef al. [13] described and analyzed a
new type of mobile malware applications with self-updating
capabilities, and then presented a network-based behavioral
analysis for detecting such malware, their work has shown
the network features between the malicious and the benign
are much different, for instance, inbound and outbound
bytes, inbound and outbound data, inner and outer time inter-
vals. Furthermore, based on the applications’ network traffic
patterns, Shabtai et al. [14] designed a system that followed
the hybrid Intrusion Detection Systems(IDS) approach and
in the client-server architecture. But their work only focused
on the several malicious types, which is not scalable.

Though there has been considerable efforts aiming to
detect network malware and traffic analysis, there are not
enough efforts spent on complete screening and systematic
characterization of android malware network traffic through
a large amount of samples.

Table VII: A blacklist set up by the top 3 DNS queries and the top
5 HTTP requests of the top 24 families

[Malicious Domain Name | TP Address]
waply.ru 78.140.131.119
108.61.11.3
219.234.85.216,219.234.85.220,219.234.85.238,
219.234.85.222,219.234.85.240,219.234.85.243
67.222.106.169,67.222.111.118,67.222.111.117,162.219.250.210
54.243.235.3,54.243.236.68,23.23.255.172,54.243.206.52,
54.255.220.219,54.243.123.77,54.243.236.68,23.21.115.13

i yangruiling com

app.wapx.cn

api.airpush.com

ad.leadboltapps.net

m-001.net 188.42.243.203
prowap.biz 185.53.178.20
dev.adtouchnetwork.net 109.201.133.191
b3.8866.0rg 117.21.224.222,111.74.238.109
b4.cookier.co.cc:8080 199.2.137.140
b3.8866.0rg:8080 117.21.224.222
smsreplier.net 50.56.218.189
bongacams.com 64.210.142.13
adserver.kimia.es 176.28.99.254,176.28.99.235
test.adpooh.com:80 115.238.144.30
log.meego91.comm 211.5.133.18
adrd.taxuan.net 69.195.129.70
ml06.com 74.63.220.83
lebar.gicp.net 174.128.255.228
mobile.tx.com.cn 221.181.68.19

ads.wapx.cn 219.234.85.237,219.234.85.236,219.234.85.214
www.imnet.us 72.52.4.121
ro.plusl.wapstart.ru 81.19.95.7,81.19.95.8
www.apperhand.com 211.5.133.18
api.tapfortap.com 198.61.246.5
b.adinch.com 192.175.102.93
c.vserv.mobi 46.137.90.66
gagaOl.net 208.91.197.104
client.go360days.com 204.11.56.26
axy.waplove.cn 69.195.129.70
admin.5 [widgets.com 63.156.206.202
Null 91.213.175.176
Null 91.213.175.148
Null 62.109.21.90
Null 91.211.88.65
joinload.ru Null
push.mobsqueeze.com Null

V. CONCLUSION

In this paper, we provided an effective Android malware
traffic generation and collection mechanism in the real
Internet environment. At the same time, our work provided
an in-depth analysis into the malware running and traffic
generation procedure, and produced a traffic data set of
500.4MB size based on an Android malware dataset with
5560 samples. We will make the traffic dataset public to
foster more research on the mobile malware’s network
behaviors.

We also presented a study of malware traffic features
in the first few minutes, such as DNS query, HTTP packet
length, ratio of downlink to uplink traffic amount, and HTTP
requests. By analyzing the DNS queries and HTTP requests,
we find that 69.55% and 40.89% of them are directed to
malicious web sites. On the one hand, it confirms that a
large part of malware would generate malicious behaviors in
the first few minutes. Meanwhile, it validates that exploiting
DNS query and HTTP request to identify the malware on
the URLVoid could reach a minimum detection rate: 69.55%
and 40.89%. Moreover, malware traffic (40.90%) and Ad
traffic(34.59%) are two major compositions of the HTTP
traffic. By analyzing the Ad traffic, we find that Ad traffic
would affect malware detection.

Therefore, in future, we will leverage the Android mal-
ware traffic and reputation systems to research and develop
a network traffic based anti-malware system at the network
access point to identify emerging mobile threats.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Grants No.61472164,the Natural
Science Foundation of Shandong Province under Grants
No.ZR2014JL042 and No.ZR2012FMO010.

REFERENCES

[1] Y. Zhou and X. Jiang, “Dissecting android malware: Charac-
terization and evolution,” in Security and Privacy (SP), 2012
1IEEE Symposium on, 2012, pp. 95-109.

[2] D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection
of android malware in your pocket,” 2014.

[3] J. M. James Talbot, Learning Android Application Program-
ming: A Hands-On Guide to Building Android Applications,
Ist ed. Addison-Wesley Professional, 11 2014.

[4] G. C. Project, “Monkeyrunner,” http://developer.android.com/
guide/developing/tools/monkeyrunner_concepts.html.

[5] N. C. Srl, “Urlvoid,” http://www.urlvoid.com/.

[6] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profile-
droid: multi-layer profiling of android applications,” Proceed-
ings of Annual International Conference on Mobile Comput-
ing & Networking Mobicom, vol. 11, no. 1, pp. 137-148,
2012.

[7]1 S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song,
“Networkprofiler: Towards automatic fingerprinting of an-
droid apps,” in INFOCOM, 2013 Proceedings IEEE, 2013,
pp. 809-817.

[8] Z. Fang, W. Han, and Y. Li, “Permission based android
security: Issues and countermeasures,” Computers & Security,
vol. 43, no. 6, pp. 205-218, 2014.

[9] J. Freke, “Smali, an assembler/disassembler for an-
droid’s dex format,” Google Project Hosting [online]
http://code.google.com/p/smali, 2013.

[10] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstruct-
ing the os and dalvik semantic views for dynamic android
malware analysis,” in USENIX Security Symposium, 2012,
Conference Proceedings, pp. 569-584.

[11] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and
D. Estrin, “A first look at traffic on smartphones,” Wpi Edu,
2010.

[12] J. Cheng, S. H. Y. Wong, H. Yang, and S. Lu, “Smartsiren:
virus detection and alert for smartphones,” SmartSiren: virus
detection and alert for smartphones, pp. 25871, 2007.

[13] L.Tenenboim-Chekina, A. O. Barad, D. M. Shabtai, B. Shapi-
ra, and Y. Elovici, “Detecting application update attack on
mobile devices through network features.” INFOCOM’2013,
2013.

[14] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach,
B. Shapira, and Y. Elovici, “Mobile malware detection
through analysis of deviations in application network behav-
ior,” Computers & Security, vol. 43, no. 6, pp. 1-18, 2014.

