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Abstract—Passive monitoring by distributed wireless sniffers
has been used to strategically capture the network traffic, as the
basis of automatic network diagnosis. However, the traditional
monitoring techniques fall short in cognitive radio networks
(CRNs) due to the much larger number of channels to be moni-
tored, and the secondary users’ channel availability uncertainty
imposed by primary user activities. To better serve CRNs, we
propose a systematic passive monitoring framework, SpecMon-
itor, for traffic collection using a limited number of sniffers in
Wi-Fi like CRNs. We jointly consider primary user activity and
secondary user channel access pattern to optimize the traffic
capturing strategy. In particular, we exploit a non-parametric
density estimation method to learn and predict secondary users’
access pattern in an online fashion, which rapidly adapts to
the users’ dynamic behaviors and supports accurate estimation
of merged access patterns from multiple users. We also design
near-optimal monitoring algorithms that maximize two levels of
quality-of-monitoring goals respectively, based on the predicted
channel access patterns. The simulations and experiments show
that SpecMonitor outperforms the existing schemes significantly.

Keywords—Cognitive radio network, passive monitoring, non-
parametric density estimation, optimization algorithm.

I. INTRODUCTION

Cognitive Radio (CR) has been envisioned as a new paradig-
m to better utilize the spectrum resources, by allowing unli-
censed or secondary users (SUs) to opportunistically access
the licensed bands, as long as they do not cause any inter-
ference to licensed or primary users (PUs). While most of the
prior research in CRNs focused on the problem of establishing
a single link between SUs [1], recent research has gone beyond
a single link to identify the challenges of implementing a Wi-
Fi like CR network [2] consisting of secondary Access Points
(APs) associated with multiple secondary clients.

Passive monitoring has been used to measure Wi-Fi net-
works [3]–[5] using a dedicated set of hardware devices,
called sniffers. It has been shown to complement the wire
side monitoring by gathering detailed PHY/MAC information.
Passive monitoring serves as the basis of numerous appli-
cations ranging from network forensics, fault diagnosis to
resource management. As the quality of those applications
mainly depends on that of traffic monitoring, it is non-trivial to
build a traffic monitoring framework with excellent monitoring
performance. Passive monitoring is particularly important to
CRNs, because: (1) cognitive radios are programmable and

difficult to manage; (2) the interference requirement in CRNs
is mandatory and extremely high. In this paper, we consider
the construction of a passive monitoring framework for Wi-Fi
like CR networks, or “WhiteFi” networks for short.

However, passive monitoring becomes a challenging task
in WhiteFi networks. First, WhiteFi networks have a much
wider spectrum (50MHz-698MHz) than traditional wireless
networks, which makes it infeasible to deploy one sniffer
for each channel. As a result, the sniffers have to decide
which subsets of channels they will operate on, referred to as
sniffer channel assignment problem. Second, SUs have to va-
cate the channels immediately once PUs start transmissions on
the corresponding channels. Such inevitable channel switching
behavior potentially complicates the sniffers’ traffic monitoring
strategies. Last but not the least, network traffic on each
channel typically comes from multiple SUs, who share the
spectrum by following a certain medium access control (MAC)
mechanism. Thus, traffic patterns observed by the sniffers are
highly dynamic, further complicating the sniffers’ monitoring
strategies.

To meet these challenges, we propose a monitoring frame-
work, SpecMonitor, which utilizes a non-parametric density
estimation method to model SUs’ channel usage pattern. This
method makes no assumptions on the unknown distribution of
channel access pattern, thus offers accurate and flexible models
which can be updated in an online fashion with acceptable
complexity. Moreover, we design a sliding window method to
perform online learning of data dynamics, and an accumulative
combination method to further improve modeling accuracy.
Then, SpecMonitor takes inputs from SUs’ channel usage
model to construct monitoring strategies.

In this paper, we consider two levels of monitoring ob-
jectives: frame-level and user-level, to diagnose different net-
work issues. The frame-level objective can be interpreted as
maximizing the frame-level quality-of-monitoring (FL-QoM),
defined as the amount of captured MAC frames of inter-
est, due to their significance for the subsequent aggregated
traffic analysis [5]. The user-level objective is to maximize
the user-level quality-of-monitoring (UL-QoM), defined as the
expected number of active users monitored, which can fa-
cilitate user behavior analysis [6]. We cast the monitoring
optimization problem as a sniffer channel assignment problem
with objective of maximizing the corresponding QoMs.

In this paper, we make the following contributions:
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(1) We design a general framework to monitor the WhiteFi
networks, which jointly considers the channel availability and
secondary user access pattern. In particular, we design an
online non-parametric density estimation mechanism to mod-
el the secondary user channel activity, which is able to support
dynamic and complex access patterns.

(2) We formulate the sniffer channel assignment problems
as integer programming (IP) problems by incorporating the
channel switching costs with the QoM objective, for which we
provide algorithms to optimize two different levels of QoMs
respectively.

(3) We present approximation algorithms to provide near-
optimal solutions. Numerical analysis shows the solutions
can offer objective values that are very close to the optimal
value, thus confirming their near-optimality. Furthermore, we
conduct extensive simulations and experiments to validate the
efficacy and efficiency of our statistical model and monitoring
framework.

The remainder of this paper is organized as follows. We
introduce the related work in section II. In section III, we
describe the monitoring system model. The secondary user
channel access model is depicted in section IV, followed
by section V, which formulates the monitoring optimization
problems and provides near-optimal solutions. Section VI
presents the evaluation results using both synthetic data from
simulations and real data from experiments. Finally, section
VII concludes the paper.

II. RELATED WORK

Passive Monitoring in Traditional Wireless Networks:
Passive monitoring in wireless networks has been an active
research area. Yeo et al. were the first to use dedicated
sniffers to passively measure a Wi-Fi network, successfully
identifying protocol anomalies and malicious WLAN usages
[3]. Cheng et al. presented Jigsaw, which is a large-scale
passive monitoring infrastructure to collect and dissect wireless
traffic for cross-layer network diagnosis in a large enterprise
Wi-Fi network [4], [5]. While the above works focused on
developing the monitoring infrastructure, some recent works
investigated the problem of optimal sniffer channel assignment
to maximize the amount of monitored information. Shin et al.
[7] formulated the sniffer channel assignment problem in the
wireless mesh network as a maximal coverage problem, and
designed approximation algorithms to solve this problem. In
[8], Chhetri et al. further extended the preceding work by
taking into account the users’ access patterns. They proposed
two monitoring models: user-centric model and sniffer-centric
model. However, they assume the statistics for different users’
activities are known. Recently, Arora et al. [9] proposed to
use multi-armed bandit to perform sequential learning of the
unknown channel statistics, which can be used to facilitate
optimal channel assignments. However, multi-armed bandit
is too complex to be used for online and efficient channel
assignments. In this paper, we present an efficient online
channel assignment mechanism without any prior knowledge
of channel access statistics, which is the first mechanism in the
literature to provide optimized channel assignments in real-
time. All the above works only considered maximizing the

number of active users covered by the sniffers, while we further
address the problem of maximizing the number of captured
frames.
Spectrum Monitoring in Cognitive Radio Networks: Chen
et al. studied frame capturing problem for network forensics
in CRNs [10], in which support vector regression (SVR)
method is employed to predict the frame arrival time to guide
channel assignments. They have similar objectives as ours,
however, our method has the following advantages: 1) SVR
method requires a time consuming training phase, while we
utilize density estimation to produce new estimates in an
online fashion avoiding of the expensive training and retraining
phases; 2) SVR method falls short of dealing with interleaved
traffic from multiple users, which corresponds to dynamic
traffic statistics, while our scheme can adapt promptly to
the traffic dynamics; 3) their monitoring framework has poor
performance when the monitored channels carry high data
rate traffic, because of frequent channel switching behavior
induced by the heuristic channel assignments. In contrast,
as we jointly consider channel switching costs and frame
capturing gains to optimize channel assignments, our method
can achieve better performance with fast traffic flows. Recently,
Yi et al. formulated the secondary user data capturing problem
as multi-armed bandit problem [11], which takes a long period
of learning process before it is able to produce an accurate
estimation of user access pattern. Thus, their method is not
efficient enough to capture adaptive and interleaved traffic
patterns either.

III. SYSTEM MODEL

A. Monitoring System Model
In this section, we describe the monitoring system model for

CR networks. We consider CR networks with coexisting PUs
and SUs. The most common PUs are TV towers and wireless
microphones (WMs). Our monitoring system is interested in
the network traffic from SUs including APs and clients who
form a WhiteFi network, as illustrated in Fig. 1. Curious
readers please refer to [2] for the design and implementation
details of WhiteFi system.

For a multi-hop network, we segment the whole network
region into small regions, called monitoring areas, and assign
a certain number of sniffers to monitor the traffic for each
monitoring area. Each sniffer may be equipped with multiple
antennas, which allow him/her to sense/capture traffic over
multiple channels at one time. We assume different AP-client
pairs in the monitoring area pick different working channels
to avoid interference, and each sniffer can overhear all the
inbound and outbound traffic from any secondary device
inside its monitoring area if they tune into the same channel.
Similar to [10], some sniffers are used as dedicated inspection
sniffers that periodically sense channels to gain channel usage
statistics, while other sniffers called operation sniffers are
responsible for capturing information. All the sniffers are
connected to a sniffer center for centralized decision making,
as shown in Fig. 1. Each inspection sniffer is assigned multiple
channels to scan. A sensing slot is a period during which the
inspection sniffer scans through all the assigned channels. In
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Fig. 1: Monitoring system
architecture for WhiteFi network

inside a monitoring area
Fig. 2: The percentage of frames in

active slots (20 ms slot length)

Fig. 3: Frame/Active slot interarrival
time distribution (20 ms sensing slot,

2 ms sensing period)

the following, a slot stands for the sensing slot unless otherwise
noted.

B. Channel Access Model
A sensing slot is composed of channel sensing and channel

switching time, whose length depends on the number of
channels to be scanned. Typically, a channel sensing period is
approximately 1ms per channel using energy detection [12],
while channel switching for a commodity 802.11b/g network
card takes about 1− 5ms [13].

During each slot, the inspection sniffer scans several chan-
nels to reveal their channel states (active/idle). Here, an active
slot indicates a slot during which the sniffer spots SUs’ traffic
after channel sensing, while idle slot represents the opposite.
As channel sensing period is less than a full slot length, the
discovered active/idle state may not reflect the genuine state
of a slot. Let Xi

k be the state of channel i at k-th sensing
slot, which takes only binary values “1/0”, corresponding to
active/idle state (in the following, we omit the subscript i
for i-th channel). Then, the sequential data Xk (k = 1, 2, . . .)
are used to calculate the active slot interarrival time for each
channel, which is defined as the time interval between two
consecutive active slots. In our design, inspection sniffers
produce active slot interarrival time as their sensing outcomes,
which will be used as the inputs to build channel access model
as explained in Section IV.

Note that one straightforward way of meeting frame cap-
turing objectives is to predict SUs’ frame arrival time by
modeling frame arrival pattern. However, it is infeasible to
derive optimized channel assignments with dynamic frame
length and unslotted frame transmission [10]. Instead of di-
rectly modeling frame arrival pattern, we model the active slot
interarrival pattern as the basis of our monitoring framework,
in which monitoring an active slot implies capturing all the
frames in the slot. To motivate/justify the adoption of active
slot interarrival time, we performed a real-world experiment
using the traffic from different types of applications (e.g. Web
browsing, Bittorrent, FTP) in operational 802.11g WLAN. The
experiment settings are illustrated in Section VI-B. Fig. 2
shows the percentage of frames in active slots corresponding

K Number of time slots
N Number of channels
N Channel index set
M Number of antennas of all operation sniffers
Sop Operation sniffer antenna index set
Xk Sensing results of inspection sniffers at slot k
Z(k) Current data set at slot k
Zin Input data set for density estimation
Tint Active slot interarrival time
W Sliding window size for online estimation
nw Number of previous windows considered for combination
tw Number of different samples in the previous window for

combination
f Probability density estimate
F Cumulative density estimate
SCAPi Slotted channel access probability of channel i
4 Sensing slot length
IdleCount Number of idle slots counted
yi Vector of binary random variables for channel i
zs,i Vector of binary random variables indicating whether sniffer

s is assigned to channel i
α Switching cost weight
Ui Number of distinct users in channel i

TABLE I: Summary of Symbols and Notations

to different sensing periods, from which we notice most of the
frames reside in the identified active slots, especially when the
sensing period is longer than 2ms. In other words, by capturing
frames in active slots, we are able to collect most of the frames.
Fig. 3 plots the histograms of frame interarrival time versus ac-
tive slot interarrival time, with each bar showing the percentage
of frames or active slots whose interarrival time is indicated
by the x-axis. These two distributions appear very similar to
each other with most of the frames concentrated within small
interarrival time region, indicating active slot interarrival time
well characterizes channel usage pattern. For ease of reference,
the commonly used notations are summarized in Table I.

IV. USER CHANNEL ACCESS PREDICTION

In this section, we propose a unified model to estimate
secondary user channel access pattern, as the front-end of
SpecMonitor. In order to build the unified model, we first
study the primary user detection issue, and then we design an
online non-parametric density estimation mechanism to predict
SUs’ slotted channel access probability (SCAP ) pertained to
each sensing slot. As its name suggests, slotted channel access
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probability is defined as the probability of SUs’ channel access
during each slot.

A. Primary User Detection
To enable CR communications, SUs need real time knowl-

edge of PUs’ activity to identify available spectrum. Sim-
ilarly, the sniffers are also required to detect PUs’ activi-
ty in order not to waste time and energy listening on the
primary-occupied channels. Primary user detection can be
achieved by using either spectrum sensing or by querying a
geo-location white space database over the internet. Spectrum
sensing is expensive in cost, energy consumption and com-
plexity of hardware. On the other hand, the database approach
is easier to implement, which allows devices to report their
locations to a web server that returns a list of available channels
at that location. However, database approach suffers from
utilization inefficiency, since it uses propagation models to
decide the available spectrum, and hence, is conservative in
the channels it returns for a given location. Either of these
two approaches can be applied to our monitoring framework.

Feature detection is one popular spectrum sensing method
for the sniffers to detect PUs’ appearance. The feature detec-
tion algorithms described in [14] can be used to sample the
UHF spectrum to detect the presence of TV broadcasts and
wireless microphone signals, which can effectively differenti-
ate between the SUs’ and PUs’ signals. Then, the sniffers can
directly perform feature detection in the beginning of every
slot to sense the availability of monitored channels.

The database approach allows both sniffers and SUs to query
the database for spectrum availability at a certain location.
After querying the database, the SUs begin operating on a
set of available channels, while inspection sniffers tune onto
these available channels to monitor SUs’ traffic patterns, and
operation sniffers are assigned to the SU-occupied channels
correspondingly. In SpecMonitor, we adopt the database ap-
proach for simplicity.

B. Secondary User Channel Access Model
In this section, we propose a framework to estimate the

secondary users’ SCAP at each slot by modeling the active
slot interarrival time distribution. The SUs’ channel access
pattern in WhiteFi networks is complicated, mainly due to the
dynamics brought by time-evolving mixed traffic from multiple
SUs with channel switching behavior.

1) Non-parametric Density Estimation Model: Instead of
assuming a specific active slot interarrival time distribution
for quantifying SUs’ traffic pattern, we propose a SU chan-
nel usage model using the non-parametric density estimation
method to better capture SUs’ traffic dynamics. Current-
ly, one of the most popular non-parametric density estima-
tion approaches is Kernel Density Estimator (KDE) with
a Gaussian kernel function [15]. Given n independent re-
alizations Xi (i = 1, 2, . . . , n) drawn from an unknown
probability density function (pdf) f(x), the Gaussian KDE
with bandwidth σ is defined as:

f̂(x;σ) :=
1

n

n∑
i=1

KG(x,Xi, σ), x ∈ R, (1)

where

KG(x,Xi, σ) =
1√
2πσ

e−(x−Xi)
2/(2σ2), (2)

from which we can see that Gaussian KDE is essentially the
overall sum of Gaussian kernels centered at location Xi with
an equal bandwidth σ.

In fact, the setting of σ is of utmost importance for the den-
sity estimation performance. A classic measure to determine
the optimal σ is Mean Integrated Squared Error (MISE):

MISE{f̂}(σ) := E[f̂(x;σ)− f(x)]2, (3)

where f(x) is the underlying genuine distribution. Assuming a
large sample set, we can obtain an asymptotic approximation
to MISE, denoted as asymptotic MISE (AMISE), written as
[15]:

AMISE{f̂}(σ) =
1

4
σ4‖f ′′(x)‖2 +

1

2n
√
πσ

, (4)

where f ′′(x) is the second derivative of f(x), and ‖·‖ denotes
the Euclidean norm on R. Thus, the asymptotic optimal value
of σ∗ is obtained by minimizing AMISE:

σ∗ = (
1

2n
√
π‖f ′′(x)‖2

)1/5. (5)

In order to compute σ∗ from Eq. 5, we need to approx-
imate ‖f ′′(x)‖2 by estimating the general form ‖f (j)(x)‖2
for arbitrary j. The corresponding optimal solution σ∗j =

( 1
2n
√
π‖f(j)(x)‖2 )1/5 with a generalized term of ‖f (j)(x)‖2

can be solved in a recursive form, namely σ∗j = γj(σ
∗
j+1),

where γj is a complicated formula given in [15]. Then, a fixed
point iteration method is employed to compute σ∗2 , which is
equivalent to the target value σ∗. This KDE algorithm provides
a viable means of automatically selecting optimal bandwidths
with superior density estimation performance.

2) Modeling Active Slot Interarrival Time Distribution:
The KDE collects the data set of active slot interarrival
time measured by inspection sniffers to generate the density
estimates. Since the distribution of collected data sets may vary
over time, the modeling accuracy of the KDE will be affected
by taking into account outdated historic data. Thereby, only the
most recent data should be imported into the modeling process.
On the other hand, the modeling accuracy also largely depends
on the size of the input data sets. If we only consider the
most recent observations by discarding all the historical ones,
the modeling accuracy will be brought down significantly.
Furthermore, the amount of inputs to KDE has great impacts
on its computational efficiency. Generally speaking, KDE with
a small data set runs more efficiently than that with a large
data set. Therefore, the major issue of this model is to decide
how much historical data should be incorporated for density
estimation, in order to produce an accurate and efficient model.

Now we present our proposed online non-parametric density
estimation protocol. The basic idea is to use sliding window
method to perform online updating of the density estimates,
and to incorporate additional historic data sets for improving
the estimation accuracy. The whole protocol is presented in
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Algorithm 1, which is repeated for each channel. Whenever
a new observation arrives, the online estimation model only
takes the data in a sliding window of size W , i.e., the data
sets exporting to the KDE only hold the most recent W
observations. The setting of window size W is pertained to the
data dynamics, thus is empirical. A simple guideline would
be: first, we set an initial value for the sliding window size
and run KDE; second, we move the sliding window forward
to see whether the estimated distribution changes over time;
third, if the change is significant, we decrease the window
size, otherwise, increase it, until we reach a satisfactory
window size. Specifically in the WhiteFi network scenario,
we set a relatively small W as 50 data samples, since the
data distribution will change more dynamically than that in a
traditional wireless network.

One of the most favorable features of sliding window
method is attributed to its support for online learning of
density estimates. As time advances, our density estimator will
take newest sets of data falling inside the sliding window to
compute the latest estimate. Therefore, our model enables the
effective characterization of the time-evolving active slot inter-
arrival distribution, and allows us to update density estimates
with every newly arrival observation.

However, the major drawback of the sliding window method
resides in the following fact: the sliding window to specify
input data also deteriorates the accuracy of KDE, because the
size of sliding window restricts the number of observations
(only W ). Hence, we need to improve the estimates by
expanding the input data size.

As depicted in Algorithm 1, we propose to combine the data
sets from multiple sliding windows according to some well-
defined criteria, in order to enlarge the sample space. How
to define such criteria for merging sample space is crucial
to the ultimate estimation performance. At first glance, more
recent windows of data sets should have higher relevance to
current window. Therefore, one intuitive method to achieve
more accurate estimation is to combine the most recent density
estimates from latest windows to capture the data freshness
[16]. However, because of the uncertain channel availability
and underlying MAC protocol, multiple clients may generate
interleaved traffic due to alternate channel accesses. Therefore,
the most recent windows may not necessarily reflect the
underlying density of current window best, while some earlier
historical data originating from the same clients pertaining
to the current window might do. Accordingly, we propose
an accumulative combination method to make the decision
of merging historical data based on statistical correlation
among the samples. As shown in Algorithm 1, we simpli-
fy the computation of statistical correlations by employing
Kolmogorov-Smirnov test (KS test). KS test is character-
ized as a non-parametric inferential statistical method, since
it makes no assumption about the distributions of samples, thus
is completely data-driven. The Kolmogorov-Smirnov statistic
is defined as follows:

Definition 1: Consider two sets of observations Z1 and Z2,
with n1 = |Z1| and n2 = |Z2| samples. The Kolmogorov-

Algorithm 1 Online non-parametric density estimation proto-
col

1: Input: W , nw , tw , current sensing result Xk at k-th sensing slot.
2: If Xk! = 0
3: Calculate the new observed active slot interarrival time Tint(k);
4: Update the current data set Z(k) = {Tint(k), . . . , Tint(k−W+1)};
5: Update the input data set Zin = Z(k);

Update the current density estimate [F̃ (k), f̃(k)] = KDE(Zin);
6: for i← 1 to nw

7: Perform KS test: KStest(Z(k),Z(k − i · tw));
8: If pass KS test
9: Update the input data set Zin = {Z(k) ∪ Z(k − i · tw)};

10: end
11: Update the current density estimate [F̃ (k), f̃(k)] = KDE(Zin);
12: else return.

Smirnov statistic is defined as:

Dz1,z2 = supx|F1(x)− F2(x)|,

where F1 and F2 represent the empirical cumulative distribu-
tion functions (cdfs) of the samples in Z1 and Z2, respectively.

Then, given Dz1,z2 , we can confirm two sample sets are
from the same distribution with a certain significance level
β, if

√
n1n2

n1+n2
Dz1,z2 ≤ Kβ , where Kβ can be set according

to a well-defined table [17]. Note that cdf is a byproduct of
the KDE, denoted as F̃ (k) in Algorithm 1. After KS test,
we combine all the data sets passing the tests into one single
data set, which is provided for the KDE to update density
estimates f̃(k) for the current slot. To tradeoff the performance
improvement and computational overhead, we limit the number
of KS tests by only preserving the previous nw windows
of data sets for each channel. Meanwhile, two consecutive
windows only differ with one data point, thus it becomes more
beneficial to test windows with interval of tw samples. In this
way, every previous window passing the KS test can export
tw more samples into the merged data set (see line 10 of
Algorithm 1).

Consequently, we derive an accurate density estimate for
active slot interarrival time distribution at each channel, by
online learning of data dynamics and cumulative combination
of historic data.

3) Computing Slotted Channel Access Probability: The
problem we are going to address in this section is how to
estimate the SCAP based on the predicted distribution of ac-
tive slot interarrival time. As mentioned before, SCAP (k+1)
represents the probability that (k+1)-th slot is active. In theory,
the predicted secondary user SCAP at (k+1)-th slot should be
represented as SCAP (k + 1) = Pr(Xk+1 = 1|X1, . . . , Xk),
whose computation appears intractable since it takes all the
historic channel states into consideration. However, we can
take advantage of the updated active slot interarrival time
distribution to simplify the computation. We note that if the
current slot is active, the current active slot interarrival time
will be the time period between the current slot and the
most recent active slot. Consequently, the probability that
current slot is active SCAP (k + 1) can be interpreted as
the probability that the active slot interarrival time is equal
to the time period between the current slot and the preceding
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Algorithm 2 The Computation of Slotted Channel Access
Probability

1: Input: current density estimate f̃(k), current sensing result Xk , the
sensing slot length ∆.

2: Initialization: IdleCount = 1
3: If Xk! = 0
4: Compute SCAP (k + 1) =

∫ ∆
0 f̃(k)dt;

5: Reset IdleCount = 1;
6: else
7: Update IdleCount = IdleCount+ 1;
8: Compute SCAP (k + 1) =

∫ (IdleCount·∆)
(IdleCount−1)·∆ f̃(k)dt;

9: end

active slot. If we assume the preceding active slot is k,
SCAP (k + 1) = Pr(Xk+1 = 1|Xk = 1) with active slot
interarrival time becoming ∆. If we assume the preceding
active slot is j, SCAP (k + 1) = Pr(Xk+1 = 1|Xk =
0, . . . , Xj+1 = 0, Xj = 1) with active alot interarrival time
becoming (k+1−j)·∆. Therefore, the predicted SCAP (k+1)
can be written as follows:

SCAP (k + 1) =


Pr(Xk+1 = 1|Xk = 1), if Xk = 1,

P r(Xk+1 = 1|Xk = 0, . . . , Xj+1 = 0, Xj = 1),

if Xk = 0.

=


∫ ∆
0 f̃(k)dt, if Xk = 1∫ (k+1−j)·∆

(k−j)·∆ f̃(k)dt, if Xk = 0,
(6)

where ∆ is defined as the sensing slot length. The algorithm
to compute the SCAP for each slot is given in Algorithm 2.
SCAP provides an appropriate measure for quantifying the
secondary user channel access pattern, which takes into ac-
count the channel availability, SUs’ current activity, and SUs’
traffic pattern learnt from their past activities. The major goal
of the inspection sniffers is to predict SCAP (k+1) that guides
the operation sniffers’ channel assignment strategies, which is
the main focus of the following section.

V. NEAR-OPTIMAL MONITORING MECHANISM

The monitoring mechanism of SpecMonitor addresses the
problem of sniffer channel assignment to maximize two d-
ifferent levels of QoMs, which is carried out by the sniffer
center. In particular, at k-th slot, the sniffer center collects
all the channel usage information gathered by the inspection
sniffers to produce a prediction set of SCAP (k + 1) for all
the channels simultaneously. This set of predicted SCAP is
then leveraged to provide optimized channel assignments for
the forthcoming slot.

Although channel switching enables the sniffers to capture
channel dynamics adaptively, its negative effects should not be
neglected in computing QoMs, especially in the CRNs with
channel availability issue. We claim that channel switching
indeed produces non-negligible overhead in terms of frame
losses in practice. In the following, we show our formulation of
sniffer channel assignment problem with two levels of QoMs,
respectively.

A. Frame-level Quality-of-Monitoring Optimization
The goal of FL-QoM optimization is to maximize the num-

ber of captured frames, given a set of channels and operation
sniffers inside one monitoring area. In section III, we show
that active slot interarrival pattern is closely associated with
frame arrival pattern, so that the number of captured frames
during K slots from a certain channel can be written as:
Nf =

∑K
k=0(Ik · n(k)

f ), where Ik is an indicator indicating
whether the k-th slot is active, n(k)

f denotes the number of
frames inside the k-th slot. Therefore, instead of directly
maximizing the number of captured frames, we transform FL-
QoM into an objective of maximizing the number of active
slots captured. For notation convenience, let us define index
sets i ∈ N = {1, . . . , N}, s ∈ Sop = {1, . . . ,M} for
indexing channels and operation sniffer antennas respectively.
The optimization problem can be formulated as the following
integer programming (IP) problem:

maximize
N∑
i=1

SCAPi(k + 1) · yi(k + 1)

− α
M∑
s=1

N∑
i=1

1

2
[zs,i(k + 1)− zs,i(k)]2

(7)

subject to
N∑
i=1

zs,i(k) ≤ 1,∀s ∈ Sop,∀k (8)

M∑
s=1

zs,i(k) ≤ 1,∀i ∈ N ,∀k (9)

yi(k) =

M∑
s=1

zs,i(k),∀i ∈ N ,∀k (10)

yi(k), zs,i(k) ∈ {0, 1},∀s ∈ Sop, i ∈ N ,∀k.
(11)

Each operation sniffer antenna in the set Sop is associated
with a binary decision vector zs,i(k) ∈ {0, 1}, i ∈ N , which
is called sniffer channel assignment indicator, with zs,i(k) = 1
if the sniffer is assigned to channel i at slot k; 0 otherwise.
yi(k + 1) is the binary variable indicating whether or not the
channel i is monitored by some sniffer in (k+1)-th slot. The
IP formulation is supposed to run iteratively: at k-th slot, after
obtaining zs,i(k) and predicted SCAPi(k+1), we can acquire
yi(k+1) and zs,i(k+1) by solving the IP problem. Clearly, the
sniffer channel assignment is updated once every slot, which
allows our mechanism to quickly adapt to the traffic dynamics.

Note that the objective function Eq. (7) is comprised of
two parts: the positive part represents the average number
of captured active slots, while the negative part indicates the
channel switching costs. For simplicity, we use the number
of channel switches between every two subsequent slots to
approximate the channel switching costs. In addition, we set a
switching cost weight α to represent the relative significance of
channel switching costs w.r.t. the gains obtained from captured
slots, which is a constant value residing within [0, 1]. Here,
we define α as the ratio of channel switching duration to the
slot duration. If channel switching takes 5ms and one slot
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has 20ms, we have α = 1/4. However, the definition of
α can be further extended to incorporate more sophisticated
metrics for channel switching costs. For instance, we can
further incorporate the probability that the current channel will
be idle in the next slot, because sniffer’s channel switching
does not incur frame loss overhead if the sniffer listens on an
expected idle channel.

The constraints (8), (10) arise due to the facts that one
sniffer antenna can only monitor one channel, and one channel
is better to be covered by one sniffer antenna inside the
monitoring area. In particular, we put forward the second
constraint, because if we allow multiple antennas to listen over
the same channel in the same area, their captured frames will
provide duplicate information. This IP problem can be viewed
as a NP-hard problem following the proof in [8], thus we need
to find an approximation algorithm to solve the IP problem.

LP rounding algorithm has been adopted to solve the IP
problem [7], [8]. This algorithm solves the LP-relaxation
of the IP formulation, and then rounds the fraction-
al results into integral solutions using for example the
probabilistic rounding algorithm (PRA) [18]. However, this
algorithm is only applicable to linear program problem, while
in our formulation, the objective function contains some
quadratic terms. We then reformulate the objective function
to remove the nonlinear terms. As zs,i(k)2 = zs,i(k) when
zs,i(k) ∈ {0, 1}, the objective function Eq. (7) can be rewritten
into a linear form as follows:

N∑
i=1

SCAPi(k + 1) · yi(k + 1)−

α

M∑
s=1

N∑
i=1

1

2
[zs,i(k + 1) + zs,i(k)− 2zs,i(k) · zs,i(k + 1)]

Note that zs,i(k) is already known before solving optimization
problem. The PRA algorithm has been proven [18] to produce
(1 − 1/e)-optimal sniffer channel assignment in linear time.
However, the execution of PRA disregards the constrain-
t (10) completely. Hence, the resulted channel assignment
obtained from PRA cannot prevent multiple antennas from
listening on the same channel. We define this problem as
channel conflict problem, and the sniffer antennas assigned to
the same channel as conflict sniffer set.

In response, we propose a heuristic sniffer fixing strategy
to address the channel conflict problem, which takes the
following steps:

(1) Find all the conflict sniffer sets in the solution obtained
from the PRA algorithm;

(2) Pick one sniffer antenna in each conflict sniffer set
randomly, and fix it to the conflicted channel;

(3) Run LP rounding algorithm again to get a new solution;
(4) Test whether the new solution contains any conflict

sniffer set: if yes, go to step (1); otherwise return the solution.
The above heuristic channel assignment strategy fixes one

sniffer antenna to one channel every round by adding con-
straints, thus it guarantees to provide a feasible solution of
channel assignments for all the sniffers within linear time,
which turns out to be a near-optimal solution for the sniffer

channel assignment problem, as shown in Section V-C. In the
end, all the confliction will be addressed after running through
a sequence of LP rounding, which guarantees the convergence
of the algorithm.

We call the channels to be assigned as potential channels.
The resulted channel assignment strategy can provide the
sniffers with the assignments of potential channels for the next
slot. Then, the sniffer center checks every potential channel to
determine whether it has already been monitored: if yes, it
skips assigning this channel; if no, it selects a sniffer antenna
which is not listening on any other potential channels to
monitor this channel. In this way, the channel switching costs
are further alleviated.

B. User-level Quality-of-Monitoring Optimization
The objective of UL-QoM optimization is to maximize the

expected number of active users monitored. In order to capture
the user-level information, it is indispensable to identify the
source of each frame, even encrypted frames. Let Ui(k) for i ∈
N denote the number of active users operating in channel i at
the k-th slot. We assume once a sniffer is tuned into a channel,
it covers all the active users operating in this channel. We do
not consider the channel switching costs in this case, because
there are typically multiple frames from a single user so that
a small number of frame loss due to channel switching does
not have a big impact on the number of users measured. The
UL-QoM optimization problem can be casted as the following
IP problem:

maximize
N∑
i=1

Ui(k) · SCAPi(k + 1) · yi(k + 1) (12)

subject to (8)− (11).

The above optimization problem can be solved using exactly
the same approximation algorithm illustrated in the previous
section, thus is omitted here. Note that Ui(k) can be measured
by counting the number of different MAC addresses from
frames passing through the AP running in channel i within
time slot k. In practice, Ui(k) may not be available at the
beginning of the k-th slot, so it can be approximated by the
measurement of Ui(k − 1), assuming users remain operating
in the same channel for the next time slot. Small errors in
estimating Ui(k) would not affect the performance much. In
the extreme case when false MAC addresses are inserted by
the attackers, more sophisticated approach is required. For
instance, machine learning methods to perform Internet traffic
classification [19] can be used to differentiate different users
based on their identified traffic types. This is out of the scope
of this paper.

C. Numerical Analysis
In this section, we present numerical results for our approxi-

mation algorithm and compare them to the upper bound of the
problem. Without loss of generality, we focus on the FL-QoM
optimization problem.
Deriving an Upper Bound: The complexity of the op-
timization problem formulated in Section V-A stems from
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(a) Normalized objective (with respect
to the computed upper bound) for 20
channels and 10 sniffers with α=0.3

(b) Normalized objectives for differ-
ent α

Fig. 4: Numerical analysis

the binary yi(k) and zs,i(k) variables, for ∀ k. To derive an
upper bound for the problem, we relax the integer (binary)
requirement on yi(k) and zs,i(k) with 0 ≤ yi(k) ≤ 1 and
0 ≤ zs,i(k) ≤ 1. The relaxed problem is a standard LP
problem, the solution of which can be obtained in polynomial
time. Since the relaxation enlarges the optimization space, the
solution to the relaxed LP problem yields an upper bound for
the original optimization problem.
Numerical Results: We consider N = 20 or 30 channels,
M = 10 or 20 sniffer antennas. SCAP values are randomly
generated for every channel over 1000 slots. We first present
the simulation results for 20 channels and 10 sniffer antennas.
We used the PRA approximation and sniffer fixing algorithms
to determine a feasible solution which serves as a low bound,
and compared the corresponding objective value with the upper
bound. Fig. 4(a) shows the normalized objective values with re-
spect to the computed upper bound (i.e. feasible solution/upper
bound) for 20 channels and 10 sniffer antennas. The average
normalized objective value obtained among 1000 slots is 0.95
and the standard deviation is 0.03. We further adjust switching
cost weight α to examine the variations of the normalized
objective values. Fig. 4(b) shows the tiny gap between the
achieved solution and the upper bound for different α.

Since the actual optimal value lies between the feasible
solution value and the upper bound, the solution value of
our approximation algorithm must be even closer to the
optimal value than the foregoing normalized ratio (normalized
objective value). Thus, the derived solution value of our
approximation algorithm is close to optimality, confirming its
near-optimality. Finally, we run an experiment to compare the
average number of captured active slot using our algorithm
with the upper bound in Fig. 5. We notice that the difference
between the monitoring solution and upper bound is kept
small over the time, which proves the near-optimality of our
approximation algorithm from the experimental perspective.

D. Complexity Analysis
In this section, we analyze the complexity of the above

approximation algorithms. We first analyze the complexity of
LP rounding algorithm. The LP rounding algorithm involves
two major steps: (1) solving LP relaxation, and (2) executing
PRA algorithm. We notice that the above two IP problems
contain (N + MN) unknown variables. Therefore, the com-
plexity of solving the LP relaxation of IP formulation is given

Fig. 5: Number of captured active slots using our algorithm
vs. Upper bound for 20 channels and 10 sniffers with α=0.3

as O((N +MN)3/log(N +MN)) [7], which is determined
by the complexity of LP solver. On the other hand, the PRA
algorithm has a linear complexity O(M ∗ N), governed by
the input vector size (M ∗ N) [18]. Thus, the LP rounding
algorithm can be solved with polynomial time complexity
O((N +MN)3/log(N +MN)).

Second, the heuristic sniffer fixing strategy will solve
channel conflict problem by running through a series of LP
rounding algorithm. In the worst case scenario, it will invoke
LP rounding M times. Hence, the sniffer channel assignment
problem can be solved with an overall worst case complexity of
O(M ∗(N+MN)3/log(N+MN)). The efficiency evaluation
of the algorithm implementation is presented in Section VI-A.

VI. EVALUATION

In this section, we conduct extensive simulations and exper-
iments to evaluate the performance of SpecMonitor for CRNs.
The simulations leverage synthetic traces, which allow us to
vary the number of channels and sniffers, as well as the traffic
patterns of different users. We also carry out experiments and
test the performance of SpecMonitor on real traces collected
from the experiments. Aside from implementing the proposed
SpecMonitor framework, we also implemented the following
algorithms for comparison.
• Random channel assignment: the sniffer channels are

randomly assigned.
• Greedy channel assignment: the sniffers are always

assigned to the predicted busiest channels based on SCAP at
every sensing slot, i.e. the channels with the largest SCAP .
• Support Vector Regression (SVR) channel assignment:

the sniffers are assigned to the channels in which the next
frame is predicted to arrive within a short period based on the
frame interarrival time predication using SVR method [10].

We assume the PUs’ presence can be detected promptly by
both inspection and operation sniffers, as illustrated in section
IV-A. The default systematic parameters used in the evaluation
are shown in the Table II.

A. Real-Time Monitoring Performance
As illustrated in Section IV,V, our monitoring framework

has a very stringent real-time requirement. Basically, we are
required to complete the channel assignments before a slot
ends, i.e., within 20 ms according to our setting. In this
section, we evaluate the running time of SpecMonitor using
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Parameters Values
W 50
nw 10
tw 25
Sensing slot length ∆ 20ms
Sensing period 2ms
Multi-slot updating 5 slots
Gaussian mean values of synthetic
traces

[3, 42]

Gaussian standard deviation of synthetic
traces

2

TABLE II: Parameters

experiments, and propose to relax the stringent requirement
without compromising the monitoring performance. We im-
plement SpecMonitor framework using MATLAB R2011b on
a Windows machine with 3.2 GHz Intel Xeon W3565 CPU and
18 GB memory, including the channel access model and near-
optimal channel assignment algorithm. In our original design,
whenever there is a new observation of active slot interarrival
time, SCAP values are updated and channels are reassigned.

We carry out experiments to count the running time of
the monitoring framework and breakdown the running time
into different sections to identify the bottleneck as shown in
Table. III. Note that the recorded running time is the average
value after running 1000 slots. The overall running time is
91.2 ms, with 97.5% of time spent on KDE operation and
optimization algorithm. By delving into the KDE function
and optimization algorithm, we find the bottleneck of KDE
operation is on the fixed point iteration algorithm [15] con-
suming 95% of overall time for each KDE invocation, while
the bottleneck of optimization algorithm is on the linprog
MATLAB function (52%) and LP rounding algorithm with
sniffer fixing strategy (40%). In our experiment, the sniffer
fixing strategy runs through LP rounding algorithm two times
on average until a valid channel assignment is generated.
Consequently, the overall running time far exceeds a slot
duration. To address this issue, we can convert the code using
more computationally efficient programming language such as
C.

Another alternative and more viable approach is to relax the
stringent real-time requirement. Instead of updating SCAP and
assigning channels every slot, we relax the per-slot updating
requirement into T -slot updating requirement, which allows
SCAP to be renewed every T slots. To satisfy the relaxed
requirement, the sniffer center only needs to check for new
observations and incorporate them in the channel usage model
every T slots. In other words, SCAP gets updated and channels
are reassigned, only if there is at least one new observation
during T slots. In our implementation, we can set T = 5, so
that the implemented model update and channel assignment
complete before the next channel assignment can be carried
out, i.e., within 100ms or 5 slots (as 91.2ms < 100ms). We
show in the following sections that per 5-slot updating does not
sacrifice the monitoring performance much compared with per-
slot updating, thus it satisfies the real-time processing while
retaining an excellent performance. Note that we neglect the
wire side communication costs between inspection sniffers and
sniffer center, which are in the order of microsecond, regarded
as negligible.

KDE Op-
eration

KStest Op-
eration

SCAP Com-
putation

Optimization
Algorithm

Total
Time

58.1 0.6 0.6 30.8 91.2

TABLE III: Average running time with 20 channels and 10
sniffer antennas (in ms)

B. Frame Capturing Performance
In this section, frame capturing performances of different

channel assignment algorithms are evaluated. First, we gen-
erate synthetic traces to evaluate the frame capture rate and
channel switching cost. Frame capture rate is defined as the
ratio of the number of captured frames versus the overall
number of frames passing through all the channels up to the
current time, while channel switching cost is represented by the
negative part of Eq. 7. Then, we collect real-world traces using
AirPcap Nx [20] with Wireshark. The traffic traces are captured
from multiple channels of operative WLANs (802.11g mode)
to emulate the scenarios in WhiteFi networks. We evaluate
SpecMonitor by comparing its frame capturing performance
with other algorithms. For all the following evaluations, we
measure the performance of algorithms running through 1000
slots for 100 rounds.

1) Synthetic Traces: First, we generate synthetic time series
traces to represent frame interarrival time, using Gaussian
distribution with an exponential correlation function. Each
trace corresponds to the traffic generated in one channel with
different mean values to simulate different traffic loads. We
evaluate the capturing performance w.r.t. different switching
cost weights α. Generally speaking, one channel switching
causes a penalty of losing α slot, α ∈ [0, 1].

We assume the training process of SVR scheme has al-
ready been done, which takes about 35 training samples [10].
Fig. 6(a) shows the frame capture rates of different methods.
With the increase of α, frame capture rates of all three
compared schemes fall down steadily because of the increasing
penalty for channel switching. However, with excessive α,
SpecMonitor will force the sniffers to switch channel only
when the reward from channel switching is higher than the
penalty; otherwise, it keeps the sniffers staying in the current
channels. In this way, SpecMonitor retains an excellent frame
capture performance. Regarding the SVR scheme, it performs
best when the channel switching costs are neglected (α = 0
or 0.1), which means SVR achieves accurate estimations of
frame interarrival time. However, when α grows larger than
0.2, frame capture rate of SVR scheme drops steadily because
of the aggravating switching penalty caused by frame loss.
Note that the capturing performance of SpecMonitor also drops
a bit due to higher switching costs, but then reverts back to
surpass the performance curves of any other schemes.

Fig. 6(b) shows channel switching costs w.r.t. α, from which
we can see SVR methods induce highest switching costs
among all methods, because of its unslotted and heuristic
switching strategy. In contrast, the switching cost of Spec-
Monitor remains the lowest.

Finally, Fig. 7(a) shows the different capturing capabilities
w.r.t. the number of sniffer antennas, the frame capturing per-
formance of all the methods keeps growing with the increasing
number of antennas. SpecMonitor achieves the highest frame
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(b) Channel Switching Costs

Fig. 6: Performance with different methods using synthetic
time series data (5 channels, 3 sniffer antennas)
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(b) Channel Switching Costs

Fig. 7: Performance with varied number of sniffer antennas
using different methods (α=0.25, 20 channels)

capture rate. We also compare channel switching costs in
Fig. 7(b). With more sniffer antennas, the channel switching
costs of SVR method decreases significantly, because the in-
creased traffic capturing capability refrains SVR method from
aggressive channel switching behavior. Meanwhile, the other
methods have much less, yet more stable channel switching
costs.

2) Real Traces: We collect the real traces from 802.11g
WLAN network, captured by a sniffer listening on the channel
established by one AP and client pair running various applica-
tions. The captured traces include both the uplink traffic to AP
and the downlink traffic from AP. We consider five different
types of trace data (FTP, BT, Web Browsing, Skype Voice and
Skype Video) with one trace per channel. FTP and BT traces
are obtained by running an automated script on the client to
download/upload several files from/to a server continuously,
and we write another automated script to browse several
websites to collect Web Browsing trace. Skype voice trace and
video trace are collected by connecting to a client using Skype
voice call or Skype video call. We evaluate the performance
with seven channels of real-world traffic, while the additional
two channels contain mixed traffic pattern. Namely, one is
the traffic combined from two clients using Skype Voice and
BT, and the other one is generated from two clients using
Skype Voice and Web Browsing. The performance is shown
in Fig. 8(a) and Fig. 8(b), from which we can see SVR method
performs even worse than random scheme. The reason is that
the SVR method takes a long time for retraining, when the
predicted value has a large deviation from the genuine one
because of the real-world traffic dynamics. Frequent retraining
and channel switching operations significantly deteriorate the
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(b) Channel Switching Costs

Fig. 8: Performance using real-world traffic (7 channels, 4
sniffer antennas)
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Fig. 9: Average frame capture rate comparison of multi-slot
updating and per-slot updating with 20 channels and 10

sniffer antennas

capturing capability of SVR method. However, SpecMonitor
retains the best performance, except in the case of small α, the
greedy method performs better when channel switching only
incurs a small penalty. This comparison result also indicates
that our model can accurately capture the traffic statistics
regardless of whether the traffic is interleaved or not.

3) Comparison of multi-slot updating and per-slot updating:
As mentioned in Section VI-A, multi-slot updating relaxes
the real-time requirement. In this section, we compare the
performance of multi-slot updating with per-slot updating.
Fig. 9 presents the frame capturing performance comparison
for multi-slot updating and per-slot updating, which shows
a slight performance degradation using multi-slot updating
method. Interestingly, 5-slot updating achieves a better frame
capture performance when α = 0.7, because it incurs less
switching costs by switching at least every 5 slots. However,
in most cases, per-slot updating captures more frames, due to
its more rapid adaptation to the traffic dynamics. From this
performance comparison, we conclude that 5-slot updating re-
tains an excellent frame capturing performance while fulfilling
the real-time requirements as presented in Section VI-A.

The intuition behind the fact that T-slot updating achieves
similar results is that the data distribution presented in our
experiments does not change rapidly over the course of T slots.
However, this fact does not apply to all the traffic scenarios.
For example, for traffic scenarios when the traffic statistics are
rapidly changing, T should be assigned a small value. The
exact value of T can be picked using the above performance
comparison method, via evaluating the performance of various
T values and selecting a larger one with acceptable perfor-



11

SpecMonitor Greedy Random
0

10

20

30

40

50

60

70
E

xp
e
ct

e
d
 N

u
m

b
e
r 

o
f 
  
  

C
a
p
tu

re
d
 U

se
rs

 p
e
r 

S
lo

t

 

 

5 Sniffers
10 Sniffers
15 Sniffers

(a) User-Level QoM Objective

6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.90.9

Number of Sniffers

A
ct

iv
e 

U
se

r 
C

ap
tu

re
 R

at
e

 

 

SpecMonitor
Random
Greedy

(b) Active User Capture Rate

Fig. 10: User capture performance with 20 channels

mance degradation.

C. User Capturing Performance
Finally, we evaluate the performance for maximizing UL-

QoM using synthetic data. We assume different channel-
s contain different numbers of SUs, and the numbers are
dynamically changing within range [0, 10] (assume uniform
distribution); also the frame interarrival time is exponentially
distributed with mean values residing in [1, 40], specifying
the traffic pattern. First, we compare the expected number
of captured users per slot using three different monitoring
schemes in Fig. 10(a). The result indicates that SpecMonitor
is able to capture more users per slot, because the optimized
monitoring strategy keeps the sniffers watching the channels
with more users.

Then, we define Active User Capture Rate as the ratio of
number of active users captured versus the overall number of
the active users appeared in all the channels. The performance
of active user capture rate w.r.t. different number of sniffers is
shown in Fig. 10(b), from which we notice that SpecMonitor
can select best sets of channels to maximize the number of
active users captured during the monitoring period. The result
implies SpecMonitor significantly outperforms two baseline
schemes, in terms of user capturing performance.

VII. CONCLUSION

In this paper, we have introduced a systematic passive
monitoring framework, SpecMonitor, for Wi-Fi like CRNs to
maximize two levels of QoMs incorporating switching costs.
Both the primary user and secondary user channel usage
patterns are considered to optimize the monitoring strategy.
Specifically, we proposed an online non-parametric density
estimation scheme to learn and predict the time-evolving mixed
traffic pattern from SUs. Based on the predicted traffic pattern,
the optimization problems of sniffer channel assignment are
formulated, for which we designed near-optimal monitoring
algorithms. One major limitation of the SpecMonitor system
is that SpecMonitor requires a substantial amount of traffic of
interest on the channel in order to produce a reasonable channel
access model. If the traffic amount over a channel is small, the
produced model may be unreliable. In future research, we will
consider the impact of traffic amount to the channel access
model. We plan to evaluate the modeling accuracy in real time.
The model built with a small traffic amount will be deemed as

unreliable, which will not be used for future predictions and
channel assignments.
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