Proximity-based Security Techniques for Mobile Users in
Wireless Networks

Liang Xiao, Senior Member, IEEEQiben Yan,Student Member, IEEBMenjing Lou, Senior Member, IEEE,
Guiquan Chenstudent Member, IEEEBNnd Y. Thomas HouSenior Member, IEEE

Abstract—In this paper, we propose a privacy-preserving on the received signal strength (RSS) of a single radio source,
proximity-based security system for location-based services (LBS) many of the proximity tests suffer from the limited prox-
in wireless networks, without requiring any pre-shared secret, imity range and the authentication accuracy is not high in

trusted authority or public key infrastructure. In this system, ; . . .
the proximity-based authentication and session key establishment POth stationary and fast changing radio environments [14],

are implemented based on spatial temporal location tags. Incor- [15]. Moreover, a recent study has shown that the RSS-
porating the unique physical features of the signals sent from based strategies are vulnerable to man-in-the-middle attacks
multiple ambient radio sources, the location tags cannot be easily [17]. To address this problem, Zheng et al. have proposed
forged by attackers. More specifically, each radio client builds a location tag-based proximity test, which exploits the con-

a public location tag according to the received signal strength tents of bient radio si IS o | th thenticati
indicators (RSSI), sequence numbers and MAC addresses of the ents of ambient radio signals to improve the authentcation

ambient packets. Each client also keeps a secret location tag thataccuracy and provides flexible range control [16]. However,
consists of the packet arrival time information to generate the the extraction of the packet contents in the proximity test not
session keys. As clients never disclose their secret location tagsomy engenders privacy leakage, but also increases the overall
this system is robust against eavesdroppers and spoofers outsidesystem overhead

the proximity range. The system improves the authentication . . ) . . .
accuracy by introducing a nonparametric Bayesian method N typical indoor environments, a radio client can usually
called infinite Gaussian mixture model in the proximity test and access multiple ambient radio sources, such as WiFi access
provides flexible proximity range control by taking into account points (APs), bluetooth devices and FM radios. Many off-
multiple physical-layer features of various ambient radio sources. the-shelf radio devices, such as laptops and smartphones,

Moreover, the session key establishment strategy significantly o, o4 ily extract the physical-layer features of the ambient
increases the key generation rate by exploiting the packet arrival

time of the ambient signals. The authentication accuracy and key Signals, including the received signal strength indicator (RSSI)
generation rate are evaluated via experiments using laptops in and the packet arrival time. Field tests have shown that clients
typical indoor environments. in the same geographic area can observe a certain shared
ambient signals, with approximately the same normalized

. INTRODUCTION . ; s .
i , packet arrival time and similar RSSIs. These physical-layer
The pervasion of smartphones and social networks h@Syyres do not directly disclose the client location and cannot

boosted the rapid development of location-based serviqeseasily estimated and forged by a client outside the proximity
(LBS), such as the request of the nearest business agh Therefore, users can exploit the ambient radio signals to

the location-based mobile advertising. Reliable and secWgpjish spatial temporal location tags and use the location
location-based services demand secure and accurate proxm{a/s to enhance security for LBS services.

tests, which allow radio users and/or service providers to deter—In this paper, we propose a proximity-based authentica-

mine whether a client is located within the same geographig, ,nq key generation strategy for radio clients, without

region [1]-{4]. In _order to _support the business or f'nanc_'?rluvolving any trusted authority, pre-shared secret or public key
oriented LBS services, proximity tests have to provide Iocat'C?Hfrastructure. For simplicity, we assume that a radio client

privacy protection and location unforgeability [5]-9]. called Alice initiates the authentication and pairwise session

Consequently, privacy-preserving proximity tests have rge, “ooneration with clients in her proximity. A peer client

cently drawn considerable research attention [10]-[16]. Basg led Bob responds to her requesoth clients monitor their
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location tag and her own measurements, Alice identifies th&@r Related Work
shared ambient packets and uses their features to derive thgs a |ocation sharing method, proximity test enables the

proximity evidence of Bob for both authentication and sessigRformation sharing between users within a certain range.
key generation. Meanwhile, Alice informs Bob the indices g&e|ated security issues have recently received significant atten-
their shared packets in his secrgt location tag and helps highs among researchers [12]-[15], [24]-[27]. In [12], a practi-
to generate his copy of the session key. cal solution exploits the measured accelerometer data resulting
The authentication utilizes a nonparametric Bayesidfbm hand shaking to determine whether two smartphones are
method (NPB) called infinite Gaussian mixture modelg|g by one hand.
(IGMM) [19] to classify the RSSI data. This method avoids the ggor the proximity range exceeding a single hand, RSSI-
“overfitting” problem and thus addresses the challenging issggsed proximity tests were proposed in [13]-[15]. The prox-
of adjusting model complexity. The NPB method has showity test in [13] calculates the Euclidean distance between
its strength in the design of device fingerprints [20] and th@le RSSIs of the shared ambient WiFi signals and applies
detection of primary user emulation attacks in cognitive radip c|assifier called MultiBoost. The test in [14] relies on the
networks [21]. As an important alternative to deterministigaatyre of the peer client's signal. In [15], a secure pairing
inference such as expectation-maximization algorithm [Z?S]trategy exploits the amplitudes or phases of the shared
the IGMM model is implemented in the proximity test togmpjent TV/FM radio signals to generate bits for the client
authenticate radio clients. airs with longer proximity range. However, these methods
The proximity-based security system takes into account tes |imited to the case where the distance between the radio
packet loss due to the channel fading and interference, a)énts is no more than a half wavelength away [15].
can counteract various types of attacks. By hiding the packetrg achieve flexible range control, Zheng et al. proposed a
arrival time sequence in the secret location tag, which is t%vate proximity test and secure cryto protocol, which applies
basis of the session key and cannot be forged by maliciogg fuzzy extractors to extract secret keys and bloom filters
users, this scheme can efficiently address eavesdropping gnafficiently represent the location tags [16]. Inspired by
spoofing attacks [34] who are located outside the proximitijis work, we propose a location tag-based security technique
range. Moreover, as public location tags do not disclose the further improve the performance, and some preliminary
client locations, location privacy is preserved for radio clientgegyits were given in [28]. In this paper, we move forward to
Involving multiple ambient radio sources, the proximity teshresent the proximity-based security protocol that incorporates
improves the authentication accuracy and obtains more flexilglg proximity range control with fine granularity. We analyze
range control than those based on a single RSSI trace [Ifik range control and security performance, and perform in-
Unlike the content-based location tag [16], the tag in this wodkepth experiments to evaluate its performance such as the key
consists of the physical-layer features of ambient signals, agéheration rate and session key matching rate in typical indoor
thus avoids decoding the ambient signals. Therefore, this wef§enarios.
is applicable to the case that the ambient packet decoding iS NOthe remainder of the paper is organized as follows. We
available or desirable, significantly reduces the computationgscribe the system model in Section Il. Then we present the
overhead, and prevents privacy leakages. proximity-based authentication method in Section IlI, and the
session key generation method in Section IV. We discuss the

proximity range control and other important issues in Section

The contributions of this paper are summarized as follow§y: and provide experimental results in Section VI. Finally, we
(1) We exploit the arrival time sequence of the sharedynclude in Section VILI.

ambient radio packets to establish pairwise session keys for
proximity clients. This scheme achieves a faster and more Il. SYSTEM MODEL
reliable key generation than the RSSI-based strategies [23]. In this paper, we consider two radio mobile clients called
(2) Unlike the work [16] whose location tag incorporateg\lice and Bob, respectively, who are located in a certain ge-
the contents of the ambient packets, this strategy dependsognaphic region. Without sharing any secret, trusted authority
the physical-layer features, including the packet arrival tim@ public key infrastructure with Bob, Alice aims at initiating
and RSSI. Without checking the packet contents, this systenproximity test and establishing a session key with him.
provides better privacy protection and is more robust againstBoth clients apply off-the-shelf radio devices, such as
spoofing, eavesdropping, replay attacks and man-in-the-midtiiptops and smartphones to extract the features of ambient
attacks. radio signals, including the RSSis, arrival time, source MAC
(3) By applying the nonparametric Bayesian method calledldresses and sequence numbers (SN) of the packets. For
IGMM and exploiting the packet arrival time information, thesimplicity, we take the 802.11 systems as an example in this
proximity test is more accurate than [13]-[15]. Moreover, thisection and consider the other types of radio sources in the
strategy also provides more flexible proximity range contrédter sections. In this system, each client monitors the ambient
and larger coverage area by combining the packet arrival tippackets, which can be sent by access points (APs), over the
and RSSI information for appropriately chosen ambient raditequency channel during the time specified by Alice, yielding
signals. a feature trace withV records.

A. Contributions
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Fig. 1. Flowchart of the proximity-based security system based on ambient
radio signals.

As shown in [13], [16], [28], a radio client in typical
indoor environments can usually receive signals fromitiple
APs. For example, a stationary laptop in an experiment BNX, with1 <i < N.
later shown in Fig. 3 received signals from four APs in 3 Bob builds a location tag, sends Alice his public location
the 0.24s time duration. Unlike [14], we utilize the ambier‘bg, and keeps his secret location tag
signals sent by multiple APs instead of the testing packetss. Alice authenticates Bob.

sent by the clients or a single neighboring AP. In addition, 5. Alice compares Bob's public location tag with her trace
clients have small chances to receive the same ambient pagkefdentify their shared packets. Following a key generation
sequence in the presence of multiple APs due to the path—lggs@orithm Alice builds a session kelt, 4, and informs Bob
and small-scale fading in radio propagation in typical indoghe indices of their shared packets in his trate,
environments. Therefore, an attacker outside the proximity cang. Based on his secret location tag and the indieBob
rarely obtains all the shared ambient packets between A"&énerates his session ké§/z.
and Bob, and thus has difficulty predicting the exact arrival |n the above handshake process, error correction coding
time sequence for their shared ambient packets. such as BCH can be applied to counteract the transmission
We assume that Alice initiates the proximity test, while BoBrrors due to channel fading and interference. In addition,
can be either an honest client to be tested or an attacker out$ideause of the different ambient radio environments and
the area. In this work, Bob sends his temporal spatial locatipBcket loss rates, clients usually take different time to obtain
tag incorporating the trace information to Alice, and hencg given number of ambient packets. Due to this problem, the
Alice obtains the RSSIs, MAC addresses and SN informati(yﬂoposed key generation strategy solely relies on the same
of Bob's ambient signals. Letssi;', t;!, MAC{* and SN shared packets between Alice and Bob and thus provides a
denote the RSSI, arrival time, MAC address and sequeng&tain degree of robustness against packet loss. More details
number of thei-th ambient packet in Alice’s feature traceof this protocol are presented in Section Ill and Section IV.

respe%tively, Witgi = 1,---,N. Similarly, let rssi’, 7, The proximity-based security techniques have to address the
MAC? and SN;” represent the corresponding informatioRollowing types of adversary clients: (1) third-party eavesdrop-
monitored by Bob. pers whose goal is to obtain the session key between Alice and

Bob, (2) third-party attackers located outside the proximity
range, who inject spoofed or replay signals in hopes of leading
By integrating the authentication and key generation pres a mismatched session key between Alice and Bob, and (3)
cess, we build a proximity-based security protocol for mobilgob as an attacker who aims at illegally passing the proximity
users in wireless networks. As illustrated in Fig. 1, thigest although he is outside the proximity range specified by
protocol consists of the following steps: Alice. We will investigate the impacts of the other attackers
1. According to the desired proximity range, Alice decide our future work. For ease of reference, the commonly used
and broadcasts her proximity test policy, including the frerotations are summarized in Table I.
guency channel, the time duration and the features to monitor
the ambient signals. [1l. PROXIMITY-BASED AUTHENTICATION
2. Upon receiving Alice’s request, Bob measures the fea-Receivers in the proximity have similar RSSls and approx-
tures of the packets as Alice specified. Both clients extract aimiately the same arrival time regarding their shared ambient
store the RSSIs, arrival time, MAC addresses and sequemadio signals. Without directly disclosing the clients’ locations,
numbers of their ambient packets, ixssiX, ¢, MAC;X and these physical-layer features cannot be easily estimated and

A. Proximity-based Security Protocol



thus be forged by clients outside the neighborhood [18]. Thetaad

fore, we propose a proximity-based authentication strategy for (r) ~ G(1,072) 4)

peer clients in wireless networks, where Alice decides whether p e

Bob is in her proximity without violating his location privacy.wherey, ando? are the mean and variance of the RSSI value
The proximity-based authentication is based on the sim:, respectively.

ilarity between the physical features of the shared ambientL€t ¢ = [c;]1<i<» denote the classification labels of Alice’s

radio signals obtained by the radio clients. More specificalljgcord vecto, wherec; is the classification result of;, and

Alice compares her trace with Bob’s measurements extracted incorporate the labels for the observations other than

from his public location tag, according to a nonparametrfcollowing Bayesian principle, by (1) and (2), we can derive the

Bayesian method (NPB) called infinite Gaussian mixtufeosterior distribution ofy,;, conditioned on the classification

model (IGMM). Unlike the hypothesis tests such as maximuffsultsc,

likelihood estimation, IGMM does not rely on the priori 5)

knowledge of the input data model and works well even with msi+r s+’

uncertainty regarding the number of hidden classes and {gere z, is the mean of the observations belonging to Class

data model [19]. In this authentication strategy, Alice classifigghat hasn, elements and is given by

the RSSI information of the ambient signals frabth APs to

authenticate clients such as Bob. T =— xj. (6)

Tings; + Ar 1

p(pi|C, X, s, A, 1) ~ N(

A. IGMM-Based Proximity Test Similar to the derivation in [19], according to (2)-(5), the

According to Bob’s location tag and her own feature tracgosteriors of the hyperparametedsandr, are given by
each with/V records, Alice obtains a record vectowith n =

—92 k
2N feature records. For simplicity of denotation, we assumep(\|y,,--- | ug, ) ~ N(“xaw _"; T o /”, _21 ,
in this section that each record has orly = 1 dimension oz +kr oz +kr
andx = [x;]1<i<n = [rssift, -+ rssin,rssiP, - rssif], (7)

where the firstV elements correspond to Alice’s trace. How-
ever, this method can be extended straightforwardly to the’ (rlps -

T . : 02+ 30, (= M)?
multivariate case wittD features, where the gamma variables Similarly, the component precisions in Eq. (1) have the
are replaced by Wishart random matrices and the normal Y: P P ® 9

. . amma priors as follows,
variables become multinormal random vectors. As an example, P

the experiments that will be presented in Section VI took into p(s18,w) ~ G(B,w™ 1), 9)
account the RSSI data of the signals sent by two ambient raWRose shaped and meanw~! are hyperparameters in the

sources W'thD. =2 . , . FGMM model. Their priors have the following inverse Gamma
The proximity test is based on the implementation of thgnd Gamma forms

IGMM model of x with the Markov chain Monte Carlo method
called Gibbs sampling [22]. More specifically, first, we can p(B71) ~ G(1,1), (10)
use the finite Gaussian mixture model (FGMM) withbasis p(w) ~ G(1,02). (11)
Gaussian distributions [19] to model the RSSI datain

Alice’s record vector. In this model, the probability distribution

k+1
s A) ~ Gk + 1, *

). (8)

By (1) and (9), we obtain the posterior ef as

function (pdf) ofz; is given by (116, %, 1, By w) ~ G(B +n B+mn .
k ( l| : ) ( : ﬁw+2j:cl:l($j _/1’1)2
p(x;) = ZmN(ul,sl—l),Vl <i<mn, Q) (12)
=1 Then, by combining Egs. (9)-(11) and after simplification,

wherey; ands; are the mean and precision of théh Gaus- we have the following posteriors,

sian distribution, respectively, and is the mixing proportion p(w|st, - o5, 3) ~ Gk + 1 kG +1 ) (13)
[22] with 0 <m <1andY.F, m = 1. Y Con BN s
The component meang; in Eq. (1) have the following

k
. . _ 3 Bsjw
Gaussian priors, p(Bls1, -+, 8y w) ~ r(g)—keyi(g)’“@ . H(wsj)%e— i
_ =1
p(:ull)‘a T) ~ N()‘v r 1)? (2) ’ (14)
where~ means “to be proportional to”. Both the meanand  According to [19], the mixing proportiort = [, - - - , 7]

precision,r, are hyperparameters with the same values for & Eqg. (1) follows Dirichlet distribution, whose joint pdf is
the k components in FGMM. They have the following normagiven by

and gamma priors: E o _a/k—1
() [TE, 7/

P(A) ~ N(p, 02), €) plm, - mele) = == Ty

(15)



whereI'(-) is the Gamma function. The concentration param- a )
eter« in Eq. (15) has an inverse Gamma shape, and its prior “

and posterior can be written as ¢rhe)
. 1 l
~ o 3/2 _ =
p(a) ~a”*Fexp(~5-), (16)
a#=3/2 exp(— L )T () @
~ Q 17
p(alk,n) T(nta) 17)

By using the standard Dirichlet integral and integrating out
the mixing proportions, we have the prior of the indicators as

L~

the following,
n
pler, -+ enla) = /p(cl, o Cu|F)p(R)dmy - - - dmry (18)
. Fig. 2. Directed graph with plate notations for the infinite Gaussian mixture
T T k ) model in the proximity test.
— (Oé) H (Oé/ + n]) , (19)
I'(n+a) e D(a/k)
wheren; is the number of data labelled with Clags B. Post-IGMM Process

Let M1—ij represent the number of data befo;nebeloqglng As radio signals in typical radio environments usually have
to Classy, andp(c; = j|c—i, o, n—;;) denote the conditional y; 0 o jant RSSIs, a post-IGMM process is proposed to
prior probability for z; n Class j. The infinite Gaussian dress slight channel time variations. This process combines
m.|xture .model can be viewed as an _e>.<treme case of FGN?Xe classes resulting from the IGMM-based proximity test, if
with £ in Eq. (19) gpproachlng |.r!f|n|ty. Qonsequently, ! hey are close to each other. More specifically, if the Euclidean
n—; > 0, the .conq!tmn'al probability of; in the IGMM distance of the centroids of two classes is below a threshold de-
model can be simplified into noted a®d, these two classes are joined together. We now take
B 1Y N (20) Classi and;j for instance. If|| Ec,—;[z:] — Ec,=;[z1] [[< ©,
n—1+a we combine these data and update the labets {4, j} with
Otherwise, if no data has been assigned to Clagst, i.e., min(i, ), ¥1 < I < n. Then the empty class is deleted by
n_;; = 0, the conditional probability of; in IGMM becomes reducingc; by one if their original value:; > max(i, j).

a Next, we apply the majority rule to process Alice’s trace
n—1l+a (@1)  with N records and calculate their new lab€ly, by the

According to Bayesian principle, we obtain the conditiondP!lOWing,
posterior of the classification indicator as

. n—;
plci = jle—i,a,n_; ;) = o

p(Ci = j|C*i7 a) =

plei = jlc_i, a, pj, s5) ~ ple; = jlC_i, a)p(xilC_y, s, 55).

(22) where §(-) is the discrete delta function. Alice accepts the
The relationships among the hyperparametars-(5 andw), data whose label equats,. We define the proximity passing
the input datax and the variables in the infinite Gaussian miXrate denoted with as the ratio of Bob's records that pass
ture model can be illustrated in the directed graph with plajge proximity test after the majority rule. Bob passes the
notations in Fig. 2, where the rectangular block represents @ximity test, if the passing rate of his monitored ambient
repeated structure. packets exceeds a threshald i.e.,v > A.

In the proximity test, we can apply the Gibbs sampling The above IGMM-based authentication strategy is summa-
method to generate the random samples for the joint probgred in Algorithm 1. Besides this RSSI-based strategy, we
bility distributions given by the above formulas of the IGMMg|so provide another authentication strategy that exploits the
model. The classification indicators can be calculated ac- packet arrival time to achieve a larger proximity range. More
cording to the observations The number of distinct values in specifically, as the key generation rate of the strategy given
the resultinge; indicates whether the recipient of the ambierfyy aAlgorithm 2 contains proximity information, we can utilize

signal is in the proximity of Alice. Ideally, alt; take the this information for authentication purpose. More details will
same value if Bob is in the proximity with Alice, and takepe provided in Section V.

two different values if otherwise.

Detailed steps of the IGMM-based proximity test are illus- IV. SESSIONKEY ESTABLISHMENT
trated in Algorithm 1, whereVU is an integer that has to be Note that clients receive the shared ambient radio packets
set large enough to ensure accurate sampling for the IGM&pproximately at the same time. Hence they can exploit the
model. In addition, the system paramet¥r has to be less arrival time of the packets to establish pair-wise session keys
than the maximum value of sequence number of the specifi@dhout requiring any pre-shared secret, trusted authority or
ambient signals to avoid packet aliasing. public key infrastructure. To this end, Alice initiates the

N
Cy = arg ngeacXZ; d(ci —¢), (23)



Algorithm 1 IGMM-based authentication rounded according to a properly chosen rounding precision.

Input: RSSI measuremenis= [z;]1<i<n The rounding precision denoted with is a tradeoff between
Output: Authentication result the key generation speed and the key matching rate between
k1 clients.
e — E[X], 02 «— Var[X] For simplicity of notation, we take the key establishment
A—Eq.(3), r— (4), i — (2) between Alice and Bob as an example. Defihé: [A;]1<i<n
B+ (10), w « (11), 5; < (9) and B £ [B;]1<;<n, WhereA; £ [MAC#,SN/] andB; £
for iter — 0 to NU do [MACEP,SNP]. Bob's secret location tag containg, 1 <
for I <~ 1to k do i+ < N, and his public location tag consists &, i.e., the
w < (5), sp — (12) MAC addresses and SNs of his ambient signals.
end for To address the transmission time, both Alice and Bob round
A= (7)< (8) the packet arrival time according ff. As Alice and Bob
B (14), w < (13) are asynchronous in general, we take the first packet received
a «— (17) by both clients as the reference packet and utilize the packet
for i =1ton do arrival time offset in terms of the arrival time of the reference
ci — (22) packet in Algorithm 2. More specifically, let, = ¢ and
if ¢; >k then t, = t¥ denote the arrival time of the reference packet at Alice
Generate a new class and Bob, respectively. Alice and Bob take the rounded packet
e, — (2), 8¢, — (9) arrival time offsets T £ round(t#* — t,,10~Y) and TP £
end if round(t? —t,,10~Y) in the session key generation to address
Updatec by deleting empty classes the clock difference between the radio devices. The selections
k « Number of distinct components of T = 1, 2 and 3 correspond to the rounding of the time
end for information to the order of 0.1s, 0.01s and 1ms, respectively.
end for Experimental results show that = 2 is a reasonable choice
Update ¢ by combining the classes whose centroid Eior ambient WiFi signals.
clidean distance is less th&h The session key generation process is presented in Al-
Ca + (23) gorithm 2. Upon receiving Bob’s public location tag, Alice
J<0 compares it with her trace to identify their shared ambient
for i <~ N +1to 2N do packets. As a result, Alice obtains their indices in her trace
if ¢c; =Ca then and Bob’s trace, given by = {i|3;,0 <i,j < N,A; = B},
Alice accepts the packef,+ + andJ = {4|3i,0 < i,j < N,A; = B;}, respectively. Then
end if Alice sendsJ to Bob.
end for In the next step, Alice generates her sessionkgybased
Proximity passing rate < j/N on the arrival time of their shared packets, it€4 = [T/"]c.
if v > A then Similarly, Bob uses) to find their shared packets in his secret
Bob passes the authentication location tag and derives his session key Wit = [T}7];c.
else The proposed key establishment process is summarized in
Bob fails the authentication Algorithm 2. We can see that this strategy has low complexity
end if and is easy to implement.

V. PROXIMITY RANGE CONTROL AND SECURITY
process by broadcasting her key establishment policy. Upon ANALYSIS
receiving the policy, radio clients in the proximity including

Bob itor th bient sianal dinal 4 build thei In this section, we discuss related issues of the proposed
0b monitor the ambient signais accordingly and bul eérecurity techniques, including the proximity range control and
spatial temporal location tags by extracting the physical-la

yﬁ{e security performance against various types of attackers
features of the signals. yp 9 yp '

Each I_ocation tag consists of twq parf[s: a secret _Iocatigg Proximity Range Control

tag that incorporates the packet arrival time information and ) ) o

is kept by the client, and the public location tag that informs In this system, Alice can control the proximity range by

Alice the RSSls for authentication and the MAC addresses affdP0Sing appropriate ambient radio sources and signal features

SN to identify ambient packétsTo counteract the difference @t multiple levels. First, as shown in Table I, radio devices

between the secret location tag between clients due to f#¢h as smartphones and laptops can access multiple radio

transmission over air, the measured packet arrival time §Urces with various coverage ranges and frequency bands.
By switching her frequency bands, Alice chooses the radio

2The duration is assumed to be short enough to avoid the reuse of SN sgurces whose Coverage ranges are larger _than the proximity
a given radio source. range. For example, Alice can use FM radio signals for the



Algorithm 2 Session key generation Algorithm 3 Simplified proximity-based authentication

Input: Input: RSSI measurements= [z;]1<;<n
A=Al cn Ai = [MACH, SN Output: Authentication result

B = [BIH;;N Bi = []WACZB7 SNZ'B}
t4 andtP: packet arrival time] <i < N
T: Rounding precision

c=1,V1<i1<n
Update ¢ by combining the classes whose centroid Eu-
clidean distance is less th&h

Output: Session KeyK 4 andK g Ca — (23)
| — {i|37,0 <i,j < N,A; =B;} j—0
J— {j]3i,0 <i,j < N,A; =B;} for i «— N 41 to 2N do
Alice sendsJ to Bob if ¢; = Cy then
ty i, ty — tP Alice accepts the packef,+ +
for i +— 1to N do end if
TA — round(t —t,,107Y) end for
TB — round(t? —t,,10~Y) Proximity passing rate < j/N
end for if v > A then
K «— [TiA]i€| Bob passes the authentication
Kp « [TPies else
Bob fails the authentication
end if
p.roximit.y range of sevgral miles, aqd phoose WiFi or bluetooth Sysiem Siistooti T WLAN TGSV T EM Tadio
signals if contacting with clients within the same room. Frequency (Hz)|  2.4G 245G | .O/1.8G | 87.5-108M
Second, the range control can also be achieved by selecting Range (m) ~10 ~35 | ~30k | >100Kk
suitable physical-layer features, since the features have dif- TABLE I

ferent coherent Spacia' distances. For examp|e, Alice and Bd:b\NGE CONTROL BY SELECTING DIFFERENT AMBIENT RADIO SOURCES
usually obtain different RSSiIs if their distance is greater than a N THE PROXIMITYBASED SECURITY SYSTEM
half wavelength, which is around several centimeters for WiFi
sources. On the other hand, two clients can receive a shared
packet approximately at the same time, even if they are moréag il e shown in the experimental results in Section
than 30m away. Therefore, we perform a fine-range proximigyj the packet arrival time-based authentication strategy can
test by taking into account the RSSIs of the ambient signlgnro| the proximity range more flexibly. In that strategy, the
and implement a large-range test based on the normalizgdlerage range that is more than 50 meters for WiFi signals
packet arrival time. is much larger than the proximity range of the method in
The RSSI-based proximity test has been given in Algorithms], which is around several centimeters. Thus for a large
1, where the range granularity is determined by the thresholgigximity range (e.g., a WiFi-based proximity test with 50m
in the post-IGMM process. In general, the range granulariptoximity range), Alice chooses the key generation rate of
decreases with the threshdid The thresholds are determineda|gorithm 2 instead of Algorithm 1 in the proximity-based
according to the proximity range via training in the similagythentication. On the other hand, if Alice’s proximity range
environments. is short, Algorithm 1 that is based on RSSIs achieves a higher
As comparison, we also propose a simplified version aeluthentication accuracy.
the proximity-based authentication strategy. As described in
Algorithm 3, this strategy is based on the RSSI informatioB- Security & Performance Analysis
of the ambient radio signals and applies the Euclidean distancerhe proximity-based security technique is robust against the
method for classification. By skipping the IGMM process oéavesdropper whose goal is to locate clients. As shown in Fig.
Algorithm 1, this strategy reduces the system overhead andall that eavesdroppers can capture are the indicasd
complexity. Bob’s public location tag that consists of the RSSIs, SNs and
Moreover, we also propose an authentication strategy MAC addresses of the ambient packets. Since neither of them
exploiting the packet arrival time feature of the ambiertirectly discloses Bob’s location, this system can protect the
signals. As shown in Fig. 7(b), the key generation rate tdcation privacy.
Algorithm 2 decreases smoothly and approximately monoton-As shown in [17], existing key generation strategies that
ically with the client distance. Therefore, Alice can evaluatare based on the RSSI and channel impulse response (CIR)
the key generation performance of Algorithm 2 to perforri23], [29]-[32] or the phase [33] are vulnerable to the man-
the proximity-based authentication. More specifically, Alicen-the-middle attacks. For instance, eavesdroppers can reveal
compares her key generation rate with a threshold deno#@P to 50% of the keys, and attackers can sabotage the key
as =: she believes that Bob is in her proximity if her keyagreements with 95% confidence by injecting spoofing signals
generation rate is higher that) and rejects Bob if otherwise. during less than 4% of the overall communication duration
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Fig. 3. Sequence numbers and MAC addresses of the ambient WiFi signals
captured by wireless adaptedirPcap Nxand open-source packet analyzers

Wiresharkin an experiment. exploiting the packet arrival time information, this security
system provides more accurate authentication with flexible
range control for larger coverage area than the strategies in

[17]. [13]-[15]. More in-depth analysis of the security performance

Fortunately, man-in-the-middle attacks out of the proximityill be performed in our future work.

can be addressed in the proposed key establishment system by

exploiting the packet arrival time. Because of the packet loss V1. EXPERIMENTAL RESULTS

due to the channel fading that decorrelates fast over space, . o i

it is highly challenging for an attacker outside the proximity_V_Ve performed experiments in Virginia Tech Northern Vir-

to estimate the exact ambient packet arrival time sequencegé'f'a Center to evaluate the performance of this system. As

a client, if there arenultiple ambient radio sourcesvhich is SNOWn in Fig. 5 and Fig. 8, two laptops acting as Alice and

true in most indoor environments. For example, Fig. 3 preseﬁtgb' respectively, were placed in different locations in the

a packet arrival sequence captured by a client with a wirelegad floor of the building. Utilizing wireless adaptetsrPcap
adapter in an experiment, showing the difficulty in estimatin x and open-source packet analyz@¥seshark both laptops

the exact SN sequence over time and thus the correspon ultaneously captured the ambient WiFi signals. Although

packet arrival time. This system never broadcasts the pack¥t €xperiments were based on WiFi, the proposed strategy
arrival time information over the air. Therefore, eavesdroppeta" P€ easily extended to the case with multiple types of radio
outside the proximity cannot derive the pairwise session k&§U'ces such as FM and Bluetooth ambient signals. _
between Alice and Bob. In each scenario, clients extracted the RSSI, packet arrival
Next, we consider attackers who spoof ambient radine SN and MAC addresses of the ambient beacon frames
sources by injecting faked or replay signals in hopes of sigt 2-417 GHz, and recorded the trace for one minute. Both
nificantly increasing the key disagreement rate between Aligients recorded the RSSIs froi = 2 ambient WiFi APs. An
and Bob in Algorithm 2. Note that the actual ambient radigX@mple of the measured RSSI vectors is presented in Fig. 4,
source and the attacker usually result in different RSSls in théffere the firstV = 1000 data were observed by Alice, while
signals due to distinct locations. Therefore, the faked packdi§ following 1000 vectors were reported by Bob. Clearly, the
can hardly pass the proposed proximity-based authenticatifyp>! VECtors variant over time.
and thus are discarded in the session key generation usjng
Algorithm 2. In addition, even with the knowledge of the paé%‘
RSSI information, attackers still have difficulty in estimating The settings of the first experiment with 17 scenarios are
the current RSSI obtained by the radio client due to thehown in Fig. 5, where Bob was placed in different locations
random time variation of RSSIs. Consequently, the proposatbng the hallway. Both clients recorded the RSSI fr@m
authentication strategy can also filter out the relayed messageabient WiFi APs. An example of the difference between the
Finally, compared with the time-variant RSSI or CIR, thambient RSSI vectors obtained by Alice and Bob is presented
packet arrival time has much higher entropy and is legs Fig. 5(b), showing that the average RSSI difference often
sensitive to the radio propagation pattern. Therefore, as wilkcreases with the distance between Alice and Bob, especially
be shown in the experimental results, this system can genenateen the distance between Alice and Bob is less than 15m. On
session keys much faster, and control the proximity rangige other hand, their relationship is in general complicated, as
more flexible than the RSS-based key generation strategitSSI| also depends on the transmitter location and the specific
such as [23]. Moreover, by introducing the IGMM method anchdio environment.

Proximity-Based Authentication
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We calculated two metrics to evaluate the authentication

performance: (1) Type 1 error rate, also known as false alarm (b) Proximity passing rate of Algorithm 1 wit®) = 5 and 7.5.

rate or false rejeCtion rate, is the prObab”ity that Alice rejecﬁg. 6. Performance of the proximity-based authentication in Experiment 1.
the packet from a client in her proximity by mistake; and (2)

Type 2 error rate, or the false acceptance rate, is the probability

to falsely accept a packet sent by a client outside her proximity. . . ]

We present the probability for Bob to pass the proximit orks w.elllwhen the Alice-Bob d|s_ta|jce is much Iarger than
test by Alice in different scenarios for both Algorithm 1 with he proximity range (e.g., the proximity range and ,A“C?'BOb
the thresholdd = 7.5 and Algorithm 3. As illustrated in Fig. distance are 3m and 40m, respectively), as shown in Fig. 6(a).
6(a), Alice can accurately determine whether Bob is in h
proximity with the 4m proximity range. For example, the fals
rejection rate of Algorithm 1 is very small if the Alice-Bob We use two criteria to evaluate the performance of the
distance is less than 3m. In this case, the false acceptamession key establishment: (1) the key generation rate that is
rate is less than 5% when the distance between Alice ati speed for Alice to generake, in bits per second, and (2)
Bob is larger than 6m, and is very small when the Alice-Bothe key disagreement rate defined as the percentage of bits in
distance is more than 10m. We also provide the performangkice’s key (K 4) that are different from Bob’sK z).
of Algorithm 1 with different® in Fig. 6(b), showing that  Fig. 7 provides the performance of Algorithm 2 in Experi-

O = 7.5 is a good heuristic choice for the authentication witment 1, with the time rounding paramefér= 1, 2 and 3. It is
the 4m proximity range. shown in Fig. 7 thall' = 2 achieves both a high key generation

Compared with Algorithm 3, the NPB-based strategy, Akate and low key mismatching rate for all 17 scenarios. For
gorithm 1, is more stable in both the rejection region anidstance, the lowest key generation rate is about 100 bps and
the passing region, and has a narrower transition region. Foe key disagreement rate is no more than 4%, if the Alice-
example, the Type 1 error rate of Algorithm 1 is more thaBob distance ranges between 1m and 55m. With such a low
5% lower than Algorithm 3, when the Alice-Bob distance irror rate, the key disagreement can be conveniently addressed
2m and the proximity range is 3m. Meanwhile, Algorithm by the error correction codes such as BCH.
rejects the clients outside the proximity more accurately. ForNext, as shown in Fig. 7(b), the key generation rate de-
instance, the Type 2 error of Algorithm 1 is about 20% lowerreases smoothly and slowly with the Alice-client distance.
than Algorithm 3, when the Alice-Bob distance is 6m and th€hat is because clients in different areas see different am-
proximity range is 3m. On the other hand, Algorithm 3 alsbient packet arrival sequences and thus packet arrival time

r .
E. Key Generation Performance & Range Control
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typical indoor environments, the key generation rate of this
scheme, which is around 200bps, is much higher than the
0 . . " .
0 10 20 30 40 50 60 13 bps rate of ProxiMate in [15]. In addition, this scheme
Alice—-Bob distance (m) . . .
also provides more accurate authentication than Ensemble.
(2) Key disagreement rate betwekiny andK 5. For example, as shown in Section VI, this scheme has a
500 : small false rejection rate for clients within 3m from Alice and
ol 2 false acceptance rate for clients more than 10 m away, which
ol ——v=3| outperforms the 0.19 false rejection rate of Ensemble [14].
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C. Room-based Proximity Test

Experiment 2 contained six scenarios, with topology il-
lustrated in Fig. 5(a). In this experiment, Alice performed

I ] Algorithm 1 to decide whether Baob is in the same office. The
F 1 performance of the room-based proximity test is presented in
: ] Fig. 8(b), showing that the error rates for Alice to find a same-

room client are mostly below 15%. We have also found that
— — = g ) tht_e ambient packe_t matching ratio is mostly above 40% when
Alice-Bob distance (m) Alice and Bob are in the same room, or above 25% when they
are in different rooms. The results indicate that both clients
have plenty of shared ambient packets to build the session key.
Fig. 7. Performance of the key generation algorithm (Algorithm 2), whos€inally, we can see that the lowest session key generation rate
g’rf;tilorr:fsi'"re shown in Fig. 5, witli =1, 2 and 3 (rounding to 0.1s, 0.01s j5 anproximately as high as 248 bps. More details are given
' in [28].
Finally, we note that this work cannot achieve zero error
rates, just like the other PHY-layer security schemes due to
sequences, in presence of multiple ambient radio sourggg properties of radio propagation. However, it can be used
as is typical in indoor environments. For instance, the k¥ enhance the security of LBS in wireless networks. For
generation rate is above 100 bps even when Bob is about 5@ample, the proposed strategy provides a lightweight security
away from Alice and the key disagreement rate is less thgptection for the LBS applications that do not require zero
4%. Therefore, the key generation rate of Algorithm 2 can Rgyor rates in a wireless network without any pre-shared secret,
used by Alice to determine whether Bob is in her proximityirysted authority or public key infrastructure. On the other
The maximum proximity range of the authentication basghnd, for the applications with strict security requirements, the
on the packet arrival time is much larger than that of the RS3jroposed scheme can serve as the bootstrap for the establish-
based strategies. For example, Alice can authenticate clieffent of secure connections among the clients in the proximity

as far as 50m away by comparing the key generation ra{gd be incorporated with existing traditional security methods
of Algorithm 2 with the threshol&E. The parameter settingsto achieve “100% security”.

in Experiment 1 are listed in Table Ill, with proximity range

Key Generation Rate (bps)
= = N N w
8 8 8 8 8

4
o
T

o
o,
=
15)

(b) Key generation rate df 4.

changing from 3m to 50m. The system paramet&rgnd =, VIl. CONCLUSION
are chosen according to the specified proximity range in theWe have proposed a proximity-based authentication and key
experiment. establishment scheme by exploiting the physical-layer features

Compared with most existing work, the proposed strate@y ambient radio signals for LBS services in wireless networks,
provides a much larger maximum proximity range than mostithout requiring any pre-shared secret. Flexible range control
existing work. More specifically, considering 2.4GHz WiFis achieved by selecting the appropriate radio sources, such as
ambient signals, the maximum proximity range of this strategmbient WiFi access points (APs), bluetooth devices and FM
is around 50m, while the maximum proximity ranges supadios and choosing their suitable physical-layer features.
ported by ProxiMate in [15] and Ensemble in [14] are only The system applies the Markov chain Monte Carlo imple-
6.25 cm and 2m, respectively. Moreover, this scheme provideentation of the infinite Gaussian mixture model (IGMM)
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