
Lexical Mining of Malicious URLs for
Classifying Android malware

Shanshan Wang1 Qiben Yan2 Zhenxiang Chen∗1 Lin Wang1 Riccardo
Spolaor3 Bo Yang1 and Mauro Conti3

1 Shandong Provincial Key Laboratory of Network Based Intelligent Computing,
University of Jinan, Jinan, China

2 Department of Computer Science and Engineering, University of Nebraska-Lincoln,
Lincoln, NE, USA

3 Department of Mathematics, University of Padova, Padua, Italy
*Corresponding author, Email: czx@ujn.edu.cn

Abstract. The prevalence of mobile malware has become a growing is-
sue given the tight integration of mobile systems with our daily life. Most
malware programs use URLs inside network traffic to forward commands
to launch malicious activities. Therefore, the detection of malicious URLs
can be essential in deterring such malicious activities. Traditional meth-
ods construct blacklists with verified URLs to identify malicious URLs,
but their effectiveness is impaired by unknown malicious URLs. Recently,
machine learning-based methods have been proposed for malware detec-
tion with improved performance. In this paper, we propose a novel URL
detection method based on Floating Centroids Method (FCM), which
integrates supervised classification and unsupervised clustering in a co-
herent manner. The proposed method uses the lexical features of a URL
to effectively identify malicious URLs while grouping similar URLs in-
to the same cluster. Our experimental results show that a URL cluster
exhibits unique behavioral patterns that can be used for malware detec-
tion with high accuracy. Moreover, the proposed behavioral clustering
method facilitates the identification of malicious URL categories and
unseen malware variants.

1 Introduction

Malicious software, or malware, has become a major threat to the growing mo-
bile ecosystem. Recently, the number and sophistication of mobile malware, par-
ticularly those target Android platforms, have increased dramatically [1]. The
Android platform and mobile anti-virus scanners provide security protection
mechanisms to protect Android devices, yet an increasing number of advanced
mobile malware can still penetrate the mobile system by evading these mecha-
nisms. As mobile devices are increasingly associated with personal information,
an effective mobile malware detection system is urgently needed.

Malware authors have adopted repackaging and code obfuscation techniques
to generate a large number of malware variants. These malware variants exhibit

similar malicious behaviors at runtime, which can be clustered together to i-
dentify their common behaviors. The vast majority of malware programs launch
their malicious activities through network (e.g., sending spam, exfiltrating pri-
vate data, and downloading malware updates). Thus, we can use the malware’s
network behaviors to conduct classification.

Clustering algorithm is an unsupervised learning method, which groups the
samples into different families based on their similarities with each other. How-
ever, the challenge of the clustering algorithms is to accurately cluster the same
family of malware together, while avoiding the inclusion of benign apps. Some
clustering algorithms can effectively discover the differences and commonalities
between malicious samples, and with these features they can divide malicious
samples into multiple categories. However, this approach does not have the a-
bility to efficiently distinguish between benign and malicious samples, i.e., it is
highly likely that a benign sample will be included into a malicious cluster when
it has some similar characteristics with a certain type of malware.

In this paper, we introduce a novel machine learning technique, Floating
Centroid Method (FCM) [2] for mobile malware detection and malware family
clustering. FCM can cluster similar samples with the same label, while separat-
ing samples with different labels as much as possible that effectively avoids the
inclusion of benign samples into a malicious cluster. Note that most malware
programs use URLs to execute or transfer commands to support their malicious
behaviors [3]. So the method that extracts URLs in HTTP traffic to detect
malware can be effective in most cases. Using FCM, malicious URLs can be
clustered and identified. By analyzing clustering results, we can find more valu-
able information about malware’s network behaviors. The contribution can be
summarized as follows:

• Through the analysis on URLs, we discover the many-to-many relationship
between URLs and malware family labels. Based on this observation, we
propose a novel network-level behavioral clustering method.

• We use Canopy algorithm [4] to improve the selection of cluster number in
FCM. The improved FCM can quickly determine the optimal cluster number.
With the improved FCM algorithm, we create a novel model that can cluster
and detect malicious URLs based on similar lexical features which has a
higher accuracy than traditional clustering algorithms.

• We mine the rich information within each URL cluster and perform statis-
tical and manual analysis to reveal different behavioral patterns in different
clusters which helps in finding malicious variants.

The rest of the paper is organized as follows: related works are introduced
in Section II. We give a detailed description on the method implementation in
Section III. The experimental results and comparative analysis are discussed
in Section IV. The limitation of this method is introduced in Section V. The
conclusions are provided in Section VI.

2 Related Work

Malware detection has traditionally been implemented based on static and dy-
namic analysis methods. Static analysis can identify malicious behaviors of suspi-
cious apps without code execution. DroidMat [5], Drebin [6], and DroidMiner [7]
are static analysis methods that utilize the machine-learning algorithm to detect
anomalies by analyzing permissions, called APIs or bytecode instructions. How-
ever, static analysis is challenged by the code polymorphism and obfuscation of
malware. In dynamic analysis methods, the app is executed in a sandbox envi-
ronment. Dynamic analysis systems [8,9] have been proposed to analyze system
calls to detect malicious behaviors. However, these dynamic analysis methods
are difficult to deploy due to their complexity.

In addition, suspicious apps can be analyzed by observing their network
traffic. We briefly review the mechanisms that use network traffic for malware
detection. Some malware detection methods focus on a specific network proto-
col [10], which considers some basic information about the TCP header. Other
studies have focused on the HTTP application-layer traffic between the attackers
and victims, such as works [11], [12] and [13]. The flower system [11] is an auto-
matic app signature system that only considers the key value pair and hostname
in HTTP header. TrafficAV [12] uses four fields (request method, request host,
request URL, and user-agent) in HTTP header and combines the decision-tree
algorithm to create an effective malware detection model. Recon [13] reveals pri-
vacy leaks in mobile network traffic by observing the keys that appear in the
URLs. Work [14] also focus on the URLs. The authors design and implement
AURA, a framework for identifying the hosts that an app talks to and evalu-
ating the risks communication entails. Many studies focus on the clustering of
malware samples to perform malware detection or explore malicious behavior of
a certain type of malware. Shabtai et al. [15] analyzed a large amount of Android
network traffic to identify malicious attacks by repackaging. They pointed out
that the apps should be grouped into different categories based on the statistical
characteristics of network data. They also summarized the deviation between
benign and malicious network behaviors. Gorla et al. [16] focused on the market
descriptive information of the app to extract keywords for clustering different
apps. They identified the most unusual apps in each cluster as suspicious app-
s because apps in the same cluster would have similar attributes or behaviors,
while the suspicious apps are drastically different from other apps. However, this
method has a high false-positive rate.

Our proposed method differs from the above classification and clustering
methods, as we integrate classification and clustering into a holistic model. The
benign URLs are for the convenience of people’s memory, while malicious URLs
do not want to attract people’s attention. Malicious URLs are often filled with
a lot of junk characters and change encoding methods, use IP addresses instead
of domain names, and randomly generate domain names. From this point of
view, lexical mining of malicious URLs is a viable way. So our work clusters and
identifies malicious URLs based on their lexical features. FCM algorithm is used

to effectively cluster similar URLs into a group while identifying malicious URLs
within the clustered URLs, attaining a better clustering performance.

3 Methodology

Our goal is to cluster similar samples together while keeping benign and mali-
cious samples separated. Figure 1 presents an overview of our method, including
URL extraction, feature representation as well as clustering and detection.

Network
Traffic

URLs

URL Extraction Feature Representation Clustering and Detection

Lexical
Features

Floating Centroids
Method

Malicious Behaviors Benign Behaviors

URL Vectors

Fig. 1: The overview of URL clustering and detection method

3.1 URL Extraction

We design a traffic collection platform to collect network data generated by
Android apps during network interaction. Then, we extract URL samples from
the network traffic. A large number of network traffic data generated by both
benign and malicious apps is collected. This module consists of two components:
app execution and network traffic collection.

We run the apps on multiple Android emulators. Every app is driven by the
Android tool Monkey [17], which can randomly send some events to the device
during the execution of each app. In the process of traffic collection, additional
operations of simulator restart and random event generation are used to trigger
the malware’s malicious activities as much as possible. To avoid the network
traffic mixing by different apps, we only execute one app every time. Before
running the next app, the emulator will be destroyed and a new emulator is
re-established, which ensures that no app is running in the background when
each app is executed. We then extract URLs from traffic data using the tshark
tool [18].

3.2 Feature Representation

1) Component Description: We divide each URL into five components and
process them separately. The five components are shown in Figure 2. The compo-
nent m represents the request method, such as “GET”, “POST” and “HEAD”.
The component h represents the hostname. This field is specific for the Inter-
net host and port number of the requested resource. The component p stands

Get Http://example.com:8080/over/there?name=ferret&color=black

m h p n

v

Fig. 2: Example of a URL consisting of five components

for page, which includes the path and page name. We use the “/” character to
segment this string and regard each word as a candidate feature after page seg-
mentation. The component n represents the set of parameter names (i.e., n =
{name, color}). The parameter names are always followed by the page and start
with the character of “?”. The component v is the set of parameter values (i.e., v
= {ferret, black}). The parameter values are usually followed by the parameter
names and connected to the parameter name with “=”. Not all of the URLs
contain these five components. In general, components m, h, p are common in
almost every URL, and only a partial URLs contain components n and v.

2) Feature Selection: We process each component separately. For m com-
ponent, we save all the request methods appearing in our dataset into a dic-
tionary. For h component, we use another dictionary to save all the different
hostnames that appear in our dataset. For the word in components p, n and v,
we consider using an automatic feature selection algorithm (chi-square test [19])
to automatically identify meaningful features. This approach accounts for the
relevance of a single word to the final category label and ignores the frequency
of each feature appears. The formula of the chi-square test is as follows:

χ2(t, c) =
∑

et∈0,1

∑
ec∈0,1

(Netec − Eetec)2

Eetec

(1)

where Netec refers to the occurrence number of feature t and class c, and Eetec

is the expected occurrence number of feature t and class c when they are in-
dependent of each other. The et and ec are boolean, and value “0” indicates
that the feature t is not in the word set from class c, whereas et with a value of
“1” indicates that word set of class c contains feature t. We use all the lexical
features in the components of m ,h and select 100 features with high chi-square
test score from components p, n and v respectively.

3) Vectorization: We vectorize the selected features since the adopted
machine-learning algorithm can only accept numerical data as input. We use
one-hot encoding method to encode selected features obtained in feature se-
lection section. In one-hot encoding, each word will be converted into m bits,
among which only one bit is set to 1 and the others are set to 0. Notably, we
make a distinction between the words belonging to components m, h, p, n and v.
This is done by having a separate dictionary for each component. After encoding
words from different components, we also need to vectorize each URL. Given a
URL, the resulting vector can be stitched together with multipart vectors. In
this vector, the value of 1 indicates that the word appears in the URL, and 0
otherwise.

3.3 Clustering and Detection Model

The original FCM algorithm comprises of two parts. The first part is a three-
layer feedforward neural network and the second part is a K-Means clustering
algorithm. The K-Means algorithm needs to set theK value in advance. However,
the K selection is a difficult but critical issue. Thus, we propose to enhance
the FCM by adding the Canopy algorithm [4] for data coarse clustering. The
modified FCM uses Particle Swarm Optimization (PSO) [20] algorithm to adjust
the parameters of the neural network in accordance with the clustering accuracy
of K-Means. The schematic of the modified FCM is shown in Figure 3 and we
elaborate on the details of each part in the following.

.
.
.

.
.
.

.
.
.

I1

I2

In

.
.
.

O1

Om

.
.
.

MaliciousBenign

Centroid

Boundary

Feedforward Neural Network Canopy Clustering K-Means Clustering

Fig. 3: The schematic diagram of improved FCM algorithm

1) Neural Network Mapping: A mapping relationship refers to the trans-
fer of training data samples from the original data space to the partition space.
For this mapping, the input dimension is N and the output dimension is M , so
the mapping is from a vector of N -dimensional elements to a vector of M ele-
ments. Specifically, the N -dimensional URL vector is fed into the neural network
and then is mapped as a vector with M -dimensions. Given that the feedforward
neural network can fit any nonlinear function, it is suitable to use feedforward
neural network for mapping completion.

2) Canopy Clustering: To determine the optimum K value quickly and
accurately, we use Canopy algorithm to cluster data roughly, and then obtain
K according to Canopy-clustering results. Specifically, the Canopy algorithm is
used to cluster data mapped by the neural network roughly and then calculate
the best cluster number for the dataset. Although the Canopy clustering algo-
rithm has low accuracy, it has a great advantage in speed and thus is often used
with K-Means.

3) K-Means Clustering: The optimum K is determined by Canopy clus-
tering, and then K-Means algorithm is used to divide the mapped data into K
disjoint clusters. The center of each cluster is called centroids. After calculating
K centroids, each cluster is marked as malicious or benign in a process called
coloring. To prevent coloring bias toward the class with more samples, in prac-
tice we balance the problem through setting weights for samples. The sample

Algorithm 1 PSO algorithm optimizes the feedforward neural network

Input: Dataset S and the structure of feedforward neural networks
Output: Best neural network and its corresponding clustering model

1: Initializing 20 different neural networks as individuals
2: while maximum generation has not been reached do
3: for id:=1 to the number of individuals do
4: Map dataset S to the partition space
5: Canopy algorithm clusters the mapped dataset to obtain the K
6: K-Means algorithm clusters the mapped dataset
7: According to clustering result to calculate E value as this individual’s fitness

8: Update individuals by their fitness

9: return Best neural network and its corresponding clustering model

weight belonging to class i with |Si| samples is defined as follows:

Wi =
1

|Si|
(2)

The principle of coloring is that if the sum of weights of malicious samples in
a cluster takes the majority, the cluster is colored as malicious. Otherwise, the
cluster is marked as benign.

4) Learning Process: We first define a variable z to evaluate a mapped
point in the partition space whose formula is shown in Formula 3. For a point
in the partition space, dselfmin represents the euclidean distance between the point

and the closest centroid with the same label. Similarly, dnoselfmin is the distance
between the point and the nearest centroid having different labels with it. When
no cluster has the same label or has different labels for this point, z is assigned as
the maximum that is a number. Under a limited condition, if a sample happens
to be mapped to a cluster center whose label is consistent with the sample, then
z equals 0; if not, then z equals 1.

z =

{
dself
min

dself
min+dnoself

min

∃ `self class

∧
`noself class

maximum Else
(3)

Finally, the optimization target function is defined as follows:

E =

s∑
l=0

1

1 + ea(1−2Zl)
, (4)

where Zl is the z value of the lth sample, s is the total number of samples in the
training set, and a is a real constant determining tortuosity, and E is the target
of neural network optimization. A smaller E indicates a better neural network
and partition space.

Based on the optimization target function, the PSO algorithm is used to
optimize the neural network and simultaneously obtain the final partition space.
The detail of how the PSO algorithm utilizes the clustering result of K-Means

to optimize the feedforward neural network is shown in Algorithm 1. With the
optimized neural network, unseen URL vector can be mapped as a new vector.
The data space where the vector is located has a clear boundary between benign
and malicious samples, and then the vector is clustered by K-Means to a specific
cluster. The prediction label of the URL vector is the same as the nearest cluster
centroid, and the URL vector shares some attributes with other samples in this
cluster.

4 Evaluation

For evaluating the proposed method, we first introduce the dataset used in our
method, and then analyze some parameters that affect the model’s performance.
Next, we compare our performance with other state of the art methods. Some
interesting findings are presented. Lastly, we apply the model on the wild apps,
and compare the detection results with different anti-virus scanners.

4.1 Data Set

Malicious apps originate from VirusShare website [21]. This library, which is
constantly updated, is one dedicated to providing a large number of malware
datasets for security researchers. We downloaded 27127 samples from this web-
site dated between July 2014 and September 2016. We collected the network
traffic generated by these malicious apps and finally obtained 18.9 GB traffic.
We extracted URL samples from the network traffic. Notably, not all URLs re-
quested by malware are malicious, and malicious URLs may only account for a
small part. So to let our training set have correct labels, we screened all URLs
using the detection report from VirusTotal [22]. Only explicitly malicious URLs
were added to the collection of malicious URLs. Eventually, only 11251 explicitly
malicious URLs are added to our dataset.

As for the benign data set, we downloaded a total of 6072 apps from multiple
third-party application markets (hiapk, wandoujia, and yinyongbao). Similarly,
the apps we downloaded from the app markets were not always benign. So we also
used VirusTotal to screen these apps. Only apps that VirusTotal confirms benign
are added to our benign app collection. And then the traffic-collection platform
was used to obtain their traffic data. Ultimately, we obtains 25276 benign URLs
from the 14.2GB collected traffic. Although benign URLs are more than twice
of malicious URLs, the FCM algorithm sets different weights (see Formula 2) for
samples from different class which helps balance the problem.

4.2 Evaluation of Clustering and Detection Model

The parameters of FCM algorithm are related to the structure of the feedforward
neural network, which is determined by the number of neurons that are included
in the input, hidden, and output layers. According to the empirical analysis of
FCM [2], we set the number of hidden-layer neurons in the neural network to 15

and the neurons number in the output layer to 9. Given that the neuron number
of the input layer is determined by the data set, we set the neuron number in
the input layer to 475 according to the length of URL vector.

1) The Effect of Neural Network Mapping: We use a feedforward neural
network to map training data from the initial data space to the partition space.
The 475-dimensional data are mapped to 9 dimensional. In theory, a clear di-
vision exists among the different categories of mapped data. To verify that our
optimal neural network can be helpful for clustering, we display the training data
before and after neural-network mapping. We use Principal Component Analy-
sis (PCA) to process and subsequently visualize the data. Figure 4(a) shows the
initial data, where different shapes represent different categories (solid points
represent benign samples, and hollow points represent malicious samples). We
find that a large part of different category data are mixed together. If directly
clustering these data, we will end with a false inclusion of benign samples in
malicious clusters. A clear boundary is observed between benign and malicious
samples after mapping in Figure 4(b), and only a few samples fall into other
categories. Thus, from the figures, we can clearly conclude that the data after
mapping are more helpful in improving clustering accuracy than data before
mapping.

Malicious

Benign

Malicious

Benign

0 1 2 3 54 0 1 2 3 4 5

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1

(a) Data before neural network mapping (b) Data after neural network mapping

Fig. 4: Training Data distribution before and after neural network mapping

2) The Impact of URL’s Different Components on Model: We di-
vide a URL into five components and deal with each component separately. By
intuition, each of the five components plays a different role on malicious URL
clustering and detection model. In this section, we assess the impact of different
components of a URL on final results. In the experiment, we vectorize the com-
ponents m , h , p, n, and v, respectively. Each component after vectorization
is then fed to the improved FCM algorithm to train the corresponding cluster-
ing and detection model. Training set and test set are separated randomly and
the test set occupy 30% of total samples. According to the accuracy of different
models on test set, we plot the line chart (Figure 5).

The horizontal axis represents the optimization generation of PSO optimizing
target function (see Formula 4), and the vertical axis represents the Accuracy of

0 1000 2000 3000 4000 5000
Generation of PSO Optimizing Target Function

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

All Parts Method Hostname Page Names Values

Fig. 5: Different components of URL affect on the accuracy with the optimization
generation increasing

the model at different optimization generations. Each type of line represents a
different model trained by different components of the URL. We can see that the
components p and h have greater contributions to the model than components
of m, n and v. Component m of the URL has the poorest recognition because
the request method is not diverse enough and almost all of request methods are
“GET” and “POST”. Each component plays a role in malicious URL detection,
so we can derive a better model by combining all URL components.

4.3 Comparison with State of The Art

1) Comparison with Other Clustering Algorithms: FCM can cluster simi-
lar samples into the same group. Here, we compare the clustering performance of
FCM with other popular clustering algorithms. We have selected several popular
clustering algorithms, i.e., K-Means, DBSCAN, Brich, and Hierarchical Clus-
tering. For each algorithm, we attempt to use multiple sets of parameters to
maximize the performance of each algorithm. The final results of different al-
gorithms are shown in Figure 6. Regarding malware identification performance,
FCM performs best in terms of Accuracy, Precision, F-Measure, and FPR. Only
DBSCAN algorithm has higher TPR than FCM, but DBSCAN algorithm has a
very high false-positive rate. Regarding clustering performance, we compare the
Silhouette Coefficient (SC) [23] of each algorithm. A higher SC score means a
model with better-defined clusters. Figure 6 shows that the SC score of FCM is
0.4, which is much higher than that of other algorithms.

2) Comparison with Other URL-similarity Measurement Methods:
We claim that we can use the lexical features of URL to cluster similar URLs into
a group. The most relevant method on URL-similarity measurement method is
described in [24], which considers structural similarity among URL strings.

In their method, URLs are divided into the four components m,p,n,v and
does not use the hostname information. However, we believe that regardless of

Accuracy TPR Precision F-Measure FPR SC
Different Metrics

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

FCM
K-Means
DBSCAN
Brich
Hierarchical Clustering

Fig. 6: The model evaluation of FCM with the traditional clustering algorithms

malicious URL detection or clustering, the hostname plays an important role.
Our experimental results further prove this point (see Figure 5). In [24], they
initially calculate the distance between the m component. If the request method
is consistent, the distance dm is 0; if it is different, the distance dm is 1. They use
the edit distance to count the distance between the p component of two URLs,
named as dp. For component n, they save all the names of a URL to an list
and then calculate the jaccard distance between the two lists; this distance is
recorded as dn. For component v, they splice the values of a URL into a string and
calculate the editing distance between two strings when two URLs are compared.
The distance of this component is dv. Finally, the distance between two URLs
is d, and the formula of d is as follows:

d = dm + dp + dn + dv (5)

To compare two URL-similarity measurement methods, we use K-Means al-
gorithm to cluster the data sets obtained by the two methods. Figure 7 shows the
clustering results of both methods. We can see that our methods have obvious
advantages over structural similarity method [24] in all metrics.

Accuracy TPR Precision F-Measure FPR
Different Metrics

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Our Method
Structural Similarity Method

Fig. 7: The clustering results comparison of our method and structured similarity
method [24]

4.4 Interesting Findings

FCM algorithm divides our data into 26 small clusters and each cluster is la-
beled benign or malicious. The URLs in a cluster are grouped together based
on similar lexical features. We analyze each cluster and discover that each one
has some interesting characteristics. We use DOM Tree technology to visualize
each cluster. Here, we show two examples. One cluster is marked as malicious
(see Figure 8), and the other is benign (see Figure 9).

Figure 8 shows a total of 114 URLs in the cluster. The request methods in the
cluster are all “GET”, and contain six unique hostnames. The different paths
are followed by the hostnames. Words ending with the symbol “=” are keys
in query strings. The corresponding values of the keys are not shown because
the values are usually alphanumeric strings that are unique for the app itself
or for third-party providers. The hostname “stat.appsgeyser.com” is malicious
as validated with VirusTotal. However, no detailed information on malicious
behavior about the hostname is found in VirusTotal. We can see that the keys
in query strings are “action”, “name”, “id”, “p”, “age”, “stall” and “system”.
The values of “name”, “id” and “age” are related to the private data of users
and devices. The word “ad” appearing in multiple URLs shows that the URLs
may be related to the advertising service.

action=

p=

name=

id=

age=

statistics.php

stall=

stystem=

stat.appsgeyser.com

init.jspm.apkads.com

ads03.adecosystems.com

adeco.adecosystems.com

android

t=

act=

cid=

variety.php

init.jsp

cdn.kfkx.net

data

com.cootek.smartdialer

market

com.market2345

com.hzsj.kyh

com.loveplay.xmxx207

rootdashi

ad

com.microgame.skater
com.zhangmeng.qnmzxrkh

static

GET

libs.sinaapp.com

images

check.txt

m

Fig. 8: An example of malicious cluster

The cluster in Figure 9 is a benign cluster in which the method is also “GET”
and contains three unique hostnames. Frequent words found in the cluster are “t-
ingsh”, “service” and “images”. Obviously, this cluster gathers a number of flows
related to entertainment services. The specific entertainment service is listening
to books. Interestingly, the URLs in the cluster do not transmit any parameter
to server, and most of the requested resources are images. This phenomenon is
in line with common sense because the apps need to load some pictures or other
resources when they start.

By comparing multiple clusters, we conclude that the words used in URLs are
always related to particular services and can reflect some specific behaviors. In
particular, the benign and malicious URLs tend to use different words, so it fur-

ther validates the use of lexical features in performing malicious URL clustering
and detection. The analysis on the cluster will help us gain more understanding
of malware’s network behaviors.

tingshu
img

25

29.jpg

32.jpg

30.jpg

31.jpg

33.jpg

34.jpg

images

focus2.jpg

sszj.jpg

focus1.jpg

focus3.jpg

focus2.jpg

sszj.jpg

focus1.jpg

focus3.jpg

100103525.jpg

along_cating

offprint

service

tingshu

getlist.v31.phpts.kuwo.cn

GET cxcnd.kuwo.cn

tingshu.kuwo.cn

Fig. 9: An example of benign cluster

4.5 URL Detection in the Wild

App

.
.
. .
.
.

I1

I2

In

.
.
.

O1

Om

.
.
.

Traffic Collection

Malicious Benign

Processing

Fig. 10: The detection process for unseen app

The ultimate goal of creating a detection model is to be applied to the real
environment to detect malicious apps. To verify the actual detection capabilities
of the established model, we download 833 new apps from the app market in
December 2017, and extract a total of 10473 URLs from their network traffic. We
use bag of words model created in the training phase to vectorize these URLs,
and then feed the vectors into the trained neural network. The neural network,
which maps the data sample to a partition space, and then the URL (i.e., benign
or malicious) is predicted based on the partition space in which the sample is
located, i.e., the centroid closest to the sample after the mapping. The app is
marked as malware, if it contains malicious URLs. The entire process is shown
in Figure 10.

In the end, our new malware dataset consists of 305 malicious apps that are
confirmed by VirusTotal reports. The 305 malware are filtered by 59 anti-virus
scanners in VirusTotal; however, each scanner in VirusTotal can only detect

AegisLab Ours Avira Sophos McAfee F-Secure BitDefender Tencent Kaspersky Baidu
Detection Rate on Malware

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
ffe

re
nt

 A
nt

i-v
iru

s S
ca

nn
er

s

Fig. 11: Detection rate comparison with novel malware in the wild using our
method and other anti-virus scanners

part of these malware samples. We select nine popular anti-virus scanners which
are AegisLab, Avira, Sophos, McAfee, F-Secure, BitDefender, Tencent, Kasper-
sky and Baidu respectively. The detection results of scanners are derived from
the VirusTotal service, which vary considerably. The best anti-virus scanner is
AegisLab which can detect 189 out of 305 malware and the detection rate is
61.9%, whereas the Baidu scanner only discovers 17 malware in the wild app
set whose detection rate is only 5.6%. Figure 11 shows the detailed statistics. In
contrast, our detection model can identify 188 out of 305 apps and the detection
rate is 61.6% that is on par with the best performing scanner, and outperforms
eight other anti-virus scanners. Note that detecting novel malicious apps is a
notoriously difficult task, and all existing methods are not able to achieve high
detection rate due to the malware’s high adaptability. Thus, the comparison
result validates the capability of our model in scanning wild apps.

5 Limitations

Our method only focuses on the URLs in HTTP traffic which brings its lim-
itation on identifying traffic using non-HTTP protocols or HTTP encryptions
(i.e., HTTPs). We have conducted a statistical analysis on the collected traffic,
and the proportion of malware samples using unencrypted HTTP protocol for
communication is 83.67% [25]. From the statistics, we can conclude that our
method will be effective in detecting most of the real-world malware samples.
We admit that new types of malware using different URLs or obfuscating URLs
can bypass the proposed method. This is a common caveat of supervised learn-
ing method. However, when the new malware is added to the training samples,
we could re-train and update the classifier for detecting such new type of mal-
ware. In addition, the process of malicious URL identification requires the label
(benign and malicious) for the training data set. Unfortunately, samples with
specific labels across the entire network are relatively hard to find.

6 Conclusion

In this paper, we propose an accurate and efficient malware detection method
through malicious URLs clustering and detection from network traffic. To facili-
tate malicious URL clustering and detection, we enhance the FCM algorithm to
render it suitable for finding best cluster number. Using the enhanced FCM al-
gorithm and a real-world dataset, we detect malicious URLs and gather similar
URLs into the same cluster. For URL clusters, we discover insightful behav-
ioral difference between benign and malicious URLs using statistical and man-
ual analyses. Specifically, we observe that the words used in URLs have close
relationships with the specific services or reflect behaviors pertinent to the ma-
licious activities. Cluster analysis simplifies the analysis on malware and further
improves malware detection at the network-level.

Acknowledgement

This work was supported by the National Natural Science Foundation of China
under Grants No.61672262, No.61573166, No.61472164, No.61572230, No.61702218
and No.61702216, the Natural Science Foundation of Shandong Province under
Grants No.ZR2012FM010 and No.ZR2017BF001, the Shandong Provincial Key
R&D Program under Grant No.2016GGX101001, CERNET Next Generation
Internet Technology Innovation Project under Grant No.NGII20160404. This
work is also supported in part by NSF grant CNS-1566388.

References

1. Security threat report 2014. [online]. Available: http://www.sophos.com/en-
us/medialibrary/PDFs/other/sophossecurity- threat-report-2014.pdf.

2. L. Wang, B. Yang, Y. Chen, A. Abraham, H. Sun, Z. Chen, and H. Wang, “Im-
provement of neural network classifier using floating centroids,” Knowledge and
Information Systems, vol. 31, no. 3, pp. 433–454, 2012.

3. Specification of malicious url 2013. [online]. Available:
http://www.antiy.net/p/specification-of-malicious-url.

4. Canopy clustering algorithm. [online]. Available: http-
s://en.wikipedia.org/wiki/Canopy clustering algorithm.

5. D. J. Wu, C. H. Mao, H. M. Lee, and K. P. Wu, “Droidmat: Android malware
detection through manifest and api calls tracing,” in Information Security, 2012,
pp. 62–69.

6. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “Drebin: Effec-
tive and explainable detection of android malware in your pocket.” in Proc. The
Network and Distributed System Security Symposium (NDSS), 2014.

7. C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidminer: Automated
mining and characterization of fine-grained malicious behaviors in android appli-
cations,” in European Symposium on Research in Computer Security. Springer,
2014, pp. 163–182.

8. L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis,” in Proceedings of the 21st
USENIX conference on Security symposium, 2013, pp. 29–29.

9. V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security analysis
of smartphone applications,” in ACM Conference on Data and Application Security
and Privacy, 2013, pp. 209–220.

10. F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of machine
learning classifiers for mobile malware detection,” Soft Computing, vol. 20, no. 1,
pp. 1–15, 2016.

11. Q. Xu, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, A. Nucci, and T. Andrews, “Au-
tomatic generation of mobile app signatures from traffic observations,” in Computer
Communications, 2015, pp. 1481–1489.

12. S. Wang, Z. Chen, L. Zhang, Q. Yan, and B. Yang, “Trafficav: An effective and
explainable detection of mobile malware behavior using network traffic,” in Proc.
IEEE/ACM International Symposium on Quality of Service (IWQOS), 2016, pp.
1–6.

13. L. Pizzato, T. Rej, T. Chung, I. Koprinska, and J. Kay, “Recon: a reciprocal
recommender for online dating,” in ACM Conference on Recommender Systems,
2010, pp. 207–214.

14. X. Wei, I. Neamtiu, and M. Faloutsos, “Whom does your android app talk to?”
in Global Communications Conference (GLOBECOM), 2015 IEEE. IEEE, 2015,
pp. 1–6.

15. A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and
Y. Elovici, “Mobile malware detection through analysis of deviations in application
network behavior,” Computers & Security, vol. 43, no. 6, pp. 1–18, 2014.

16. A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior against
app descriptions,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 1025–1035.

17. Android monkey tool. [online]. Available: http://developer.android.com/tools/
help/monkey.html.

18. Tshark - dump and analyze network traffic. [online].
Available:https://www.wireshark.org/docs/man-pages/tshark.html.

19. Y. Yang and J. O. Pedersen, “A comparative study on feature selection in text cat-
egorization,” in Fourteenth International Conference on Machine Learning, 1997,
pp. 412–420.

20. Pso tutorial. [online]. Available: http://www.swarmintelligence.org/tutorials.php.
21. Virusshare.com - because sharing is caring. [online]. Available: http-

s://virusshare.com/.
22. Virustotal. [online]. Available: https://www.virustotal.com/.
23. S. Aranganayagi and K. Thangavel, “Clustering categorical data using silhouette

coefficient as a relocating measure,” in Conference on Computational Intelligence
and Multimedia Applications. International Conference on, vol. 2. IEEE, 2007,
pp. 13–17.

24. R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-based malware
and signature generation using malicious network traces,” in Usenix Conference on
Networked Systems Design and Implementation, 2010, pp. 26–26.

25. S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, “Detecting android
malware leveraging text semantics of network flows,” IEEE Transactions on In-
formation Forensics & Security, vol. PP, no. 99, pp. 1–1, 2017.

