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Abstract

Event detection and forecasting in social media networks, such as disease outbreak and

air pollution event detection, have been formulated as an anomalous connected sub-

graph detection problem. However, the huge search space and the sparsity of anomaly

events make it difficult to solve this problem effectively and efficiently. This pa-

per presents a general framework, namely anomalous connected subgraph scanning

(GraphScan) which optimizes a large class of sophisticated nonlinear nonparametric

scan statistic functions, to solve this problem in attributed social media networks. We

first transform the sophisticated nonlinear nonparametric scan statistics functions into

the Price-Collecting Steiner Tree (PCST) problem with provable guarantees for evalu-

ating the significance of connected subgraphs to indicate the ongoing or forthcoming

events. Then, we use tree decomposition technique to divide the whole graph into a

set of smaller subgraph bags, and arrange them into a tree structure, through which we

can reduce the search space dramatically. Finally, we propose an efficient approxima-

tion algorithm to solve the problem of anomalous subgraph detection using the tree of

bags. With two real-world datasets from different domains, we conduct extensive ex-

perimental evaluations to demonstrate the effectiveness and efficiency of the proposed
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approach.
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1. Introduction

Recently, the social media, such as Twitter and Weibo, has provided an effective

means for people to discern and share the events happening around them everyday

[1, 2, 3, 4], and has cultivated new research problems in event detection and forecasting

[5, 6, 7, 8, 9]. Due to its growing popularity, the social media can provide multiple5

angles in describing the events [10, 4] to inform people more comprehensively and

instantaneously. For example, when the devastating earthquake took place in Sichuan

province of China in 2012, Weibo firstly announced the first hand information and

organized many volunteer groups across the country in aiding the survivors. Moreover,

numerous recent researches have explored and demonstrated the power of social media10

for event forecasting, such as crime event [11], civil unrest event [12], and disease

outbreak forecasting [13, 14].

This paper focuses on the problem of domain-specific event detection and forecast-

ing in social media. In general, the social media networks are composed of nodes such

as users, edges such as friend relationships, attributes such as the keywords of the text15

[15, 16]. In the social media networks, the events can be represented as the anomalous

subgraphs, i.e., the connected subsets of nodes presenting high occurrence of keywords

related to domain specific events. The event detection and forecasting problem can be

generalized as the problem of finding the most anomalous subgraph in social media

networks as shown in Figure 1. The identified anomalous subgraphs can be employed20

to discover the ongoing or forthcoming events.

However, the problem of anomalous connected subgraph detection is NP-hard [17,

18, 19]. The high complexity of social media datasets makes it challenging to detect

the anomalous subgraphs effectively and efficiently [20, 21, 22, 23]: first, the search

space is huge due to the immense amount of social media data; second, the anomaly25
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Figure 1: The proposed work focuses on the search of anomalous connected subgraph (S) in the attributed

social media networks for event detection and forecasting, where each node (user) is attributed with a p-

value based on a set of observed features. Specifically, (a) a social media network, (b) attributed the social

media network based on p-values, (c) a tree of bags obtained from tree decomposition approach, (c) the

transformation from the anomalous connected subgraph detected based on nonparametric scan statistics and

an approximation approach with the tree of bags to event detection and forecasting results.

events are sparse due to the imbalanced nature of the social media data. In general, the

abnormal nodes related to a domain specific event are rather sparse. These challenges

make the anomalous connected subgraph detection problem computationally difficult.

Most of recent researches about the connected subgraph detection problem focus on

the parametric approaches and generalize this problem as a hypotheses testing problem30

[24, 25]. However, the proposed models may be inappropriate, in particular for the

distribution-free data, the solutions will get even worse [26]. Moreover, most of the

existing approaches only focus on the search of the significant subgraphs or constrained

patterns in the entire network [27, 28, 29], and there is very limited work capable of

downscaling the search space dramatically. Specifically, [7] proposes to detect the35

early emerging events in the entire social networks with the location sensitivity by con-

sidering the relevance between the event locations and user locations; [30] proposes to

learn the graph structure from the entire network data by comparing the most abnor-

mal subsets of nodes discovered with and without the constraints and the normalized

log-likelihood ratio is employed to evaluate the property of a graph structure; [31] first40

presents to aggregate the attributes for every node in the network, and then transforms
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the problem into a subgraph detection problem with a large search space.

To address the technical challenges mentioned above so as to detect the anomalous

connected subgraphs efficiently in social media networks, we propose a general frame-

work, GraphScan, based on nonparametric statistics. Rather than assuming a particular45

distribution, such as the Poisson statistic [32], nonparametric statistics do not assume

any specific distribution for normal and abnormal nodes. Instead, they first compute

a p-value for every node by comparing the current node attribute observations with

its historical attribute observations [17], and then maximize a score function F(G) of

p-values of nodes in graph G. Recent studies show that the nonparametric statistics,50

such as Berk-Jones statistic and Tippet’s statistic, can be well applied to the task of

finding anomalous subgraphs [33, 34]. In this work, we optimize a large class of the

nonparametric scan statistics for detecting and forecasting events. Specifically, we first

transform the sophisticated nonlinear nonparametric scan statistic objective functions

into the Prize-Collecting Steiner Tree (PCST) problem. Then a tree decomposition ap-55

proach is introduced to divide the entire network into a set of smaller subgraph groups,

namely bags, and arrange them into a tree structure. As a result, we can decrease the

scale of problem dramatically and the intimate connection nodes can be arranged into

the same bag via the tree decomposition. Moreover, an approximation algorithm is pro-

posed to optimize the transformed graph scan statistics and find the most anomalous60

connected subgraph based on the tree of bags obtained from the tree decomposition

prior.

The main contributions of this paper are summarized as follows:

• Transforming the sophisticated nonlinear nonparametric scan stastics into

the PCST problem with provable guarantees for event detection and fore-65

casting. We propose a generic framework, namely anomalous connected sub-

graph scanning (GraphScan), which transforms a large class of sophisticated

nonlinear nonparametric scan statistic functions into the PCST problem for de-

tecting and forecasting events in attributed social media networks. The events

are comprised of subsets of nodes and their integrated information strengths are70

characterized as the scan statistics. Moreover, the proposed approach can be
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applied to networks with both node and edge weights.

• Proposing an efficient approximation algorithm for anomalous connected

subgraph scanning. We first employ the tree decomposition to divide the graph

into a set of smaller subgraph groups, namely bags, and arrange them into a tree75

structure at the same time, through which we can downscale the problem space

dramatically. Then an efficient approximation algorithm is proposed based on the

tree of bags for solving the transformed PCST problem to obtain the anomalous

connected subgraph to indicate the ongoing or forthcoming events.

• Conducting comprehensive experiments to validate the performance of the80

proposed approach. We conduct extensive experiments to evaluate the pro-

posed GraphScan on haze dataset and flu outbreak dataset and compare the ex-

perimental results with those obtained from the baseline approaches. The re-

sults demonstrate that GraphScan outperforms existing representative baseline

approaches in both effectiveness and efficiency.85

The rest of the paper is organized as follows. The related work is presented in

Section 2. Section 3 introduces some definitions, such as attributed network and tree

decomposition. Section 4 first presents the proposed GraphScan approach, and then

performs approximation approaches for tracking the most anomalous subgraph based

on the tree decomposition. Comprehensive experiments are provided in Section 5.90

Finally, the conclusion and future work are presented.

2. Related Work

2.1. Event Detection

Recently, numerous work has been proposed for event detection in social media.

Generally speaking, for event detection problems, both clustering and classification95

approaches are first employed to obtain the interesting information of the events. Then

they are used to find the probable happening events by analyzing the temporal infor-

mation or both spatial and temporal information. Specifically, in the aspect of the
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temporal information, [35] proposes to find the popular topic employing the measure-

ment of “hotness” and presents an efficient approach for choosing the surrogates of100

these topics. [36] proposes an approach for detecting the events that happen in the

twitter stream. [37] performs an efficient approach used for learning the temporal alter

patterns to discover the streaming events. In the aspect of spatial and temporal informa-

tion, both two kinds of the information are considered to detect the events. Such as [38]

proposes to recognize the tweets that are close in both space and time, and by seeking105

the co-occurrence terms to check whether they represent the same event. Moreover,

[5] proposes a clustering approach to select the information about the same events in

history but from different space and time. An interactive approach is proposed in [39],

and in this approach some queries are inserted and the tweets with the information at

different space and time can be obtained. In [40], the authors perform a hierarchical110

clustering approach for the problem of event detection in the dataset of Twitter. In this

approach, both spatial and temporal information are employed to evaluate the similari-

ties of the tweets.

2.2. Event Forecasting

For different specific event forecasting problems, there are three kinds of social115

event forecasting approaches, including temporal information based approaches [41,

42, 43], spatial and temporal information based approaches [44, 45, 46] and causal

relationship based approaches [47, 48]. Specifically, for the first kind of the event fore-

casting approach, using the high dimensional or multivariate information, supervised

mining approaches are generally employed to transfer event forecasting problems to the120

problems of classification or regression. Such as the topics are extracted from tweets

and then are employed to predict the crime events based on the logistic regression [11].

For the second kind of event forecasting approaches, except the temporal information,

lots of events in social media always show the spatial characteristics in different do-

mains, such as the events of water pollution and traffic congestion. For example, [46]125

presents a multiple task mining approach for the problem of event forecasting by min-

ing multiple relevant spatial information. Moreover, the approach proposed in [49]

forecast the event of disease by detecting the spatial and temporal anomaly. For the
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third kind of event forecasting approaches, they conduct the events forecasting by us-

ing the relationships between them and other related current or historical events. Such130

as the approach proposed in [47] can find the conditional probabilities among the events

by making use of deep models.

In summary, although there are a great deal of approaches that consider the tem-

poral and spatial information of the social media for event detection and forecasting in

social media networks, they generally only focus on the search of the significant infor-135

mation on the whole network and there is very limited work that is able to decrease the

scale of searching dramatically, especially for event detection and forecasting based on

anomalous regions detection.

3. Preliminaries

Several definitions are introduced in this section, including attributed network, tree140

decomposition, p-value, tree width and nonparametric statistics.

Definition 1 (Attributed Network) An attributed network G = {V,E,W} is an undi-

rected connected graph, where V = {v1, ..., vN} denotes the set of nodes, E ⊆ V× V

refers to the set of edges (relations), and the function W : V → [0, 1] denotes a sin-

gle empirical p-value for every node v ∈ V, which can be calculated by employing145

the empirical calibration through the comparison between current features of v and its

features in history.

In this work, the anomaly of nodes in social media networks are evaluated by p-

values. The two-stage empirical p-value proposed in [33] is employed for node v,

denoted as p(v) to evaluate degree of anomaly of node v, and its nice theoretical prop-150

erties has been presented in [33]. Specifically, the p(v) is measured based on a set

of feature p-values. For a feature d of node v and its current feature observation, the

significance of the current feature observation is measured by its statistical p-value

based on the empirical distribution of this feature. Moreover, the p-value of feature d

is calculated as the fraction of its historical observations in which an greater or equal155

observation is included on this feature.[50, 33, 17]. Intuitively, the p-value is a mea-
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surement of anomaly with the value range [0, 1]: the smaller the p-value of a node is,

the more abnormal this node is.

Definition 2 (Nonparametric Scan Statistics). Given a set of p-values S, nonparametric

statistics which are also called aggregation functions of p-values denote a class of score

value functions F(S) which evaluate the joint significance of p-values in S and have

the following general formulation:

F(S) = ϕ(α,ψα(S), ψ(S)), (1)

where ψα(S) denotes the number of p-values which are equal to or less than α in the

subgraph S. α is an anomaly significance level of node p-values. Moreover, the func-160

tion ϕ(α,ψα, ψ) satisfies the properties: ϕ is monotonically increasing with respect to

ψα and monotonically decreasing with respect to ψ̃α = ψ − ψα.

Definition 3 (Tree Decomposition). For the network G = (V,E,W ), a tree decom-

position of G is a pair ({Xi|i ∈ I}, T = (I,H)), where T = (I,H) is a tree,

I = {1, 2, ..., |T |}, |T | is the number of the tree nodes of T , {Xi|i ∈ I} is a fam-165

ily of subsets nodes of V for each tree node i ∈ I of T and H is the connection of tree

nodes, such that:

•
⋃
i∈I Xi = V;

• ∀u, v ∈ V and (u, v) ∈ E, there exists an i ∈ I with u ∈ Xi and v ∈ Xi;

• all tree nodes k on any m-n-path, Xm

⋂
Xn ⊆ Xk.170

In general, the subsets Xi are denoted as bags of nodes. The width of a tree de-

composition td = ({Xi|i ∈ I}, T = (I,H)) is defined as tw(td) = maxi∈I |Xi| −

1, where |Xi| is the nodes number of bag Xi. For graph G, let TD refer to all

tree decompositions, then the tree width of the graph G is denoted as TW (G) =

mintd∈TD(tw(td)) [51]. Several equivalent representations of tree decomposition are175

presented in [52, 53, 54, 55]. In this work, we use a representative tree decomposition

approach, namely Gavril based on chordal graph [56]. Moreover, an illustration of the

tree decomposition is shown in Figure 1 in which (b) is an original graph and (c) is the

corresponding results of tree decomposition, including three bags which are built as a

tree of bags.180
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4. Anomalous Connected Subgraph Scanning

In this section, we first introduce the anomalous connected subgraph detection

problem based on nonparametric scan statistics, and then we propose to transform it

into the PCST problem. Finally, an approximation algorithm is proposed to obtain the

optimal approximation solution for the problem of most anomalous subgraph detection.185

4.1. Nonparametric Graph Scan Statistic Problem

In order to discover the most anomalous connected subgraph in the attributed social

media network G(V,E,W ) so as to realize the event detection and forecasting, the

generic formulation of the nonparametric graph scan statistic is shown as below.

F(S) = max
α≤αmax

ϕ(α,ψα(S), ψ(S)), (2)

where S ⊆ V denotes a set of connected nodes, namely the subgraph in this work,

ψ(S) denotes the number of the nodes in S, ψα(S) =
∑
v∈S(τ(p(v) ≤ α)) is the

number of node p-values and their anomaly significant level is α. τ(·) = 1 if its input

is true, if not, τ(·) = 0. We optimize the significance level α between 0 and a constant190

αmax < 1 (αmax = 0.15 by default). Moreover, it is necessary to consider a range of

α, instead of a single threshold for the anomaly significance of nodes. For a fixed α,

such as α is equivalent to 0.1, the statistic may disable the ability of discovering a small

amount of abnormal p-values which are smaller than 0.1 or a great deal of abnormal

p-values which are slightly greater than 0.1. In practice, the value of the selected αmax195

is slightly higher than the typical significance levels which can be predefined [33].

In this work, the anomalous connected subgraph scan statistic function FBJ(S)

based on the Berk-Jones statistic is employed as a case study since it has shown the

effective performance in some real-world applications [33, 57]. Berk-Jones statistic

satisfies some optimal properties and outperforms any weighted Kolmogorov statistic

[58]. The following our proposed approach is also applicative to other nonparametric

scan statistic functions. Furthermore, the FBJ(S) is shown as:

FBJ(S) = max
α≤αmax

ϕBJ(α,ψα(S), ψ(S))

= max
α≤αmax

ψ(S)×KL(
ψα(S)

ψ(S)
, α)

. (3)
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where KL(·) is the Kullback-Leibler divergence (also called relative entropy) between

the observed and the expected proportions with the p-values less than α. The Kullback-

Leibler divergence is written as:

KL(ϑ, ω) = ϑ log(
ϑ

ω
) + (1− ϑ) log( (1− ϑ)

(1− ω)
). (4)

Moreover, the problem of finding the most anomalous connected subgraph in at-

tributed social media networks can be transformed into an optimization problem as

shown below:

max
S⊆V

max
α≤αmax

ϕ(α, ψα(S), ψ(S)), (5)

which is equivalent to:

max
α∈U(V,αmax)

max
S⊆V

ϕ(α, ψα(S), ψ(S)), (6)

where U(V, αmax) denotes the union of {αmax} and different p-values which are no

more than αmax in V.

4.2. Problem Transformation

Because of the difficulty in solving the nonparametric graph scan statistic problem200

mentioned above, we propose to transform it into a PCST problem as shown in the

following Theorem 1, in this work, and the transformed problem can be easily solved

and analyzed.

Theorem 1 (Problem Transformation) To obtain the most anomalous connected sub-

graph, the problem shown in Eq.(6) is equivalent to the problem as shown below:

(α∗, S∗) = argmax
α∈P1

argmax
SQα ∈P2

ϕ(α,ψα(S), ψ(S)), (7)

where P1 = U(V, αmax), P2 = {S0
α, ..., S

N
α }. SQα refers to the solution with Q ∈

[0, N ] normal nodes budget of the following node-weighted PCST problem:

SQα = argmax
S

F (S) = argmax
S

(ψα(S)− ψ̃α(S)), (8)

where ψα(S) =
∑
v∈S(τ(p(v) ≤ α)) and ψ̃α(S) =

∑
v∈S(π(p(v) > α)). τ(·) = 0 if

its input is false, if not, τ(·) = 1; π(·) = 0, if its input is false, otherwise, π(·) = 1.205

10



Proof. We first denote that (S, α)′ is the set of nodes in S and their p-values are

greater than α, (S, α)′′ is the set of nodes in S and their p-values are less than or

equal to α. Moreover, every SQα ∈ {S0
α, ..., S

N
α } is composed of the subset of abnor-

mal nodes and the subset of normal nodes and satisfies the conditions: ψ̃α(S) = Q

and S = (S, α)′
⋃
(S, α)′′. Assume that (α∗, S∗) is the optimal solution to the pro-210

posed problem as shown in Eq.(7)(
⊕

), then it can be easy inferred that (α∗, S∗α∗
Q) =

(α∗, S∗). Nevertheless, based on the properties as presented in Definition 2, there does

not exist any other (S?, α?) with ψ̃α?(S?) = Q′, where α? 6= α∗ or Q 6= Q′, such that

ϕ(α?, ψα?(S
?), ψ(S?)) > ϕ(α∗, ψα∗(S

∗), ψ(S∗)). Otherwise, this will be in contra-

diction to the above assumption
⊕

. �215

4.3. Approximations with Tree Decomposition

In order to solve the proposed event detection and forecasting problem in Eq. (8)

mentioned above efficiently in social media networks, we use one of the most rep-

resentative tree decomposition approaches, namely Gavril [56]. This approach can

efficiently decompose the whole network G into a set of bags consisted of nodes and220

arrange them into a tree structure. This operation allows us to solve the proposed prob-

lem one bag by one bag so as to reduce the scale of the problem. However, a following

hard problem is how to guarantee the connection of the detected anomalous subgraph.

Moreover, for the sake of obtaining the most desired solution with the connection

guarantee of the detected anomalous subgraph, a dynamic programming algorithm is225

designed when the input network G is a tree of bags. Specifically, in the dynamic pro-

gramming, for the bag Xk, we construct a dynamic table hash table (spk, sk, F (sk))

named as Dk to record all kinds of states (e.g., overlap nodes, score function value) in

the bag Xk, where sk = {sk1 , sk2 , ..., ski , ..., skm}, and m is the number of the subset

nodes in sk, and ski ⊆ Xk refers to a subset nodes ofXk, spk = {spk1 , s
p
k2
, ..., spki , ..., s

p
km
}.230

spki = ski
⋂
Xp
k , andXp

k refers to the parent bag ofXk, F (sk) = {F (sk1), F (sk2), ...,

F (ski), ..., F (skm)}, and F (ski) is the score function value corresponding to ski . This

table is used to store the combination information of nodes in the bag. From Xp
k ,

we can get the items of its child bags, namely the items in (spk, sk, F (sk)), such as
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(spki , ski , F (ski)). Finally, a backtracking approach checks this table and gets the sub-235

set with the maximum score value. In conclusion, the proposed GraphScan framework

can be summarized as Algorithm 1.

Algorithm 1 GraphScan
Input: Network G(V,E,W ).

Output: Anomalous connected subgraph S∗.

1: Set αmax = 0.15, L = 3.

2: T = Gavril(G) . T = (X, (I,F)) is the tree decomposition.

3: for l ∈ {1, ...,L} do

4: Root T at tree bag r and construct a post-order walk for T ;

5: for α ∈ U(V, αmax) do

6: for k = 1 to |T | do

7: ComputeDPTable(G, T,Xk, α); . See Section 4.4

8: end for

9: Backtracking and seek out SQα ;

10: end for

11: Sl ← argmax
α∈U(V,αmax)

ϕ(α,ψα(S
Q
α ), ψ(S

Q
α ));

12: end for

13: Calculate l∗ ← argmaxlϕ(α,ψα(S
l), ψ(Sl));

14: Return S∗ ← Sl
∗

4.4. Processing Strategies of Tree Bags

After the tree decomposition, the bags can be categorized as small bags and large

bags. In both types of bags, the abnormal nodes distribution can be abstracted as Figure240

2. The connected abnormal nodes are independent or connected by some normal nodes.

Moreover, in a bag, the nodes can be divided into overlap nodes and non-overlap nodes,

where the overlap nodes mean that these nodes appear in the current bag and its parent

bag simultaneously.

For different scales of bags, we employ different processing methods. We first245

combine the adjacent connected abnormal nodes or connected normal nodes together
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Figure 2: An illustration of abstract presentation of the abnormal nodes distribution in a bag as shown in

(1), where the purple nodes, such as 1, 2, 3, 5, 6, 7, refer to the abnormal nodes and the green nodes refer to

the normal nodes. The connected abnormal nodes are independent (e.g., 1, 2) or connected by some normal

nodes (e.g., 3, 5). In a bag, the nodes can be divided into overlap nodes and non-overlap nodes as shown in

(2), where the overlap nodes indicate these nodes that appear in the parent bag of this bag, and non-overlap

nodes indicate other nodes.

respectively, named as the unit in this paper. As shown in Figure 3, each node refers to

a unit. Moreover, in small bags, since there are a few units in each bag, we can find the

results by enumerating all the possible combinations. Comparatively speaking, for a

large bag Xk, we design the heuristic strategies to get the combination results, denoted250

as ComputeDPTable(G, T,Xk, α) as shown below. The algorithm returnsDk, where

Dk is the dynamic programming hash table of the tree bag Xk. The proposed dynamic

programming is shown in Figure 3.

Update the connection based on the dynamic table of child bags. If the bag

Xk is not a leaf bag, we first update the connection based on the dynamic table of255

the child bags of Xk, namely the tables Dc1 , ..., Dcd corresponding to the child bags

Xc1
k , ....X

cd
k . For every child bag of Xk, such as Xci

k , look up every item Dcij with

scij in the send forward table of Dci : (s
p
ci , sci , F (sci)), i ∈ {1, 2, ..., d}, where Dci is

the dynamic table of bag Xci
k . The send forward table is made up of the set of units in

overlap region of Xci
k and Xk and the corresponding score values as shown in Figure260

3. Then we connect the unit set scij ∈ X
ci
k and units in Xk which can be connected

based on the connection in scij and Xk as a new unit, and update the corresponding
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score function value as shown in Step 1 of Figure 3.

Small bags. In small bag Xk, we consider all possible units combinations. For

each combination (subset) sk in the bag Xk, we first use the Union-Find algorithm to265

make sure Gsk is a connected subgraph of G based on sk. Two kinds of edges should

be considered: one comes from sk, the other connection relation comes from the child

bags of sk as mentioned above. Then we get the intersection of sk and its parent bag

spk, and using it as an index to add or update the item of dynamic table Dk. For each

item Dki : (s
p
ki
, ski , F (ski)), if (spki , ski , F (ski)) /∈ Dk, add (spki , ski , F (ski)) to Dk270

via Dk = Dk

⋃
(spki , ski , F (ski)). Otherwise, assume (spki , s

′
, x) be the current entry

stored in Dk for spki . If F (ski) > x, update the value for spki in Dk : s
′
= ski , x =

F (ski).

Large bags. Since there are lots of nodes in the large bags, in order to decrease the

time complexity, we propose a new method to avoid enumeration. The key idea is to275

merge the anomalous nodes in non-overlap regions as much as possible. For a large

bag Xk, we first combine the nodes in child bags as mentioned above and initialize Dk

based on the overlap region of Xk and its parent bag. Then other units in the bag Xk

will be combined step by step. The details are shown as follows.

• Combine the units in child bags and initialize Dk. For a large bag Xk, it has280

a great number of child bags, so through this step, we can first combine all the con-

nections in Xk carried by its child bags Xc1
k , ..., X

cd
k as the operations as mentioned

above. Then, we initialize all of the positive units in the overlap region of Xk and its

parent bag as items individually in the dynamic table Dk as shown in Step 1 of Figure

3.285

• Connect abnormal units which is not in overlap regions of Xk and its parent bag

and update Dk. Let NOL refer to the set of units in non-overlap regions of Xk and

their parent bag, and nol ∈ NOL. Moreover, we let OL refer to the set of units in

overlap regions of Xk and its parent bag, and ol ∈ OL. Considering there are few

abnormal units compared with normal nodes since abnormal is the minority, we first290

use shortest path algorithm to calculate the score function values F of combinations

of every abnormal unit oli in overlap region OL with every unit nolj in non-overlap

region NOL. Then we choose the combination with the largest score function value
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Figure 3: An illustration of the proposed dynamic programming for seeking out the most abnormal subgraph

S. For simplicity, each node refers to a unit that merges the adjacent abnormal nodes and the normal nodes

in the tree bags respectively. Each bag has a dynamic table to record the set of node, index and the corre-

sponding score value. In small bags, we enumerate all possible combination. In large bags: step 1: combine

units in child bags; step 2: connect abnormal units in overlap regions; step 3: combine the anomalous unit in

overlap regions and update the dynamic table Dk for bag k.
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to connect and update Dk if the value is bigger than the separate two units as shown

in Step 2 of Figure 3. Finally, we iterate the above operations until there is no unit295

to combine. Moreover, if there are some abnormal units in non-overlap region left,

we should consider the combination within them, since the optimal subset may exist

among them. And in every run, we should make sure to combine the adjacent abnormal

units in time.

• Combine the anomalous units in overlap regions and update Dk. Finally, since300

some abnormal units have been connected in the above step as shown in Step 2 of

Figure 3, we then combine the anomalous units in overlap regions, such as unit3 and

unit5. as shown in Step 3 of Figure 3. In this operation, we connect the overlap

region anomaly units by using the same ways which are used to combine the abnormal

units in non-overlap region as mentioned above. In this step, the unit3 and unit5 are305

combined with the unit2 since the score function value of connected units is larger than

the separate value, such as the value of unit3.

Backtracking. When we complete the dynamic programming, we first find the set

s which maximizes F (s) in all the tables. Then we let opt sets be a |X| long vector

of sets and construct a pre-order walk δ of T rooted by r. In the beginning, we set310

opt sets[δ[0]] = s, then S = s. Then, for k = 1 to |X|, and for every child tree bag

Xj of δ[k], if spjq = opt sets[δ[k]]
⋂
Xj , we have (spjq , sjq , F (sjq )) ∈ (spj , sj , F (sj))

that corresponds to spjq in table Dj . Then, S = S
⋃
sjq .

4.5. Theoretical Properties

Theorem 2 (Connection Transitivity). Let Xc1
k , X

c2
k , ..., X

cn
k be the child bags of315

bag Xk. If ∃{v1, v2} ∩Xk 6= ∅, ∃Xci
k & {v1, v2} ⊆ Xci

k , i ∈ {1, ..., n}, {v1, v2} ⊆

sci ⊆ Xci
k , where sci is a node subset of Xci

k , and there is corresponding spci of sci ,

which is one of the forward table index of Xci
k , then v1, v2 is connected in Xk and for

Xk, v1, v2 is the connected nodes in its child bags.

Proof. Since spci is the index of sci with overlap nodes in Xci
k , sci is a connected320

subset which will be forward to Xk. If v1, v2 ∈ sci , then v1 and v2 is connected. If

{v1, v2}∩Xk 6= ∅ and through the processing of combining nodes in children bags in

Xk, v1, v2 will be merged in Xk under the connection property of sci with the index
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spci . Moreover, if v1, v2 is connected in Xk, the score value of connected v1, v2 is more

than the value of any one of the two, and from the index ofXk, the details of connection325

in child bags will be ignored, and in backtracking, v1 and v2 are connected anomalous

nodes in child bags, even if only one of them is selected in some child bags. �

Time complexity analysis. The dynamic programming algorithm guarantees to

obtain a local maximum solution and has the time complexityO(n
′∗T), where n

′
(n
′
<<

n) refers to the number of bags, T is the average runtime of all bags. Most of the bags330

are small since the sizes of bags follow the long tail distribution [59]. For small bags,

the time complexity is O(2m), where m ≤ th is the number of nodes in bags. th

is the threshold of small bags, in this work, th is set as 10. For large bags, the time

complexity is O(m2), where m ≤ tw and tw is the tree width. Moreover, once the

tree decomposition is completed and we have a large amount of data from different335

time slices, with more time slices, the proposed approach can achieve shorter runtime

compared with the existing baseline methods.

5. Experiments

In this section, the proposed GraphScan framework is evaluated based on two dif-

ferent domain datasets. We first introduce the experimental setup, and then we evaluate340

the performance of proposed GraphScan approach and compare it against four state-

of-the-art approaches. Finally, a case study of haze event detection and forecasting is

presented.

5.1. Experimental Setup

In this subsection, the datasets, the baseline approaches, performance metrics and345

so on are presented. The details of them are shown below.

Datasets: The experiments in this work are based on two different datasets (flu

outbreak dataset and haze event dataset) as the case learning scenarios.

(1) Flu outbreak dataset. 10% of all original Twitter data from 01-01-2011 to

05-01-2015 are obtained randomly in the USA. In this dataset, we choose 0.16 million350

tweets in which every one has no less than two keywords about the flu outbreak event

17



from a dictionary of 72 keywords obtained based on the experts. In terms of the rela-

tions of users and tweets, a user-user network with 39,565 users and 49,204 edges is

built, where every user is characterized with a states location of USA. For every user

and every day, a p-value mentioned above is computed based on the approach in [33]355

for every keyword. In all, correspond with the 226 weeks from 01-01-2011 to 05-01-

2015, there are 226 snapshot graphs. Moreover, we obtain the Golden Standard Re-

ports (GSR) of 2.26 thousand official records about flu outbreak (influenza-like illness

(ILI) ≥ 2000) from the official website (http://www.cdc.gov/flu/weekly/

.) which is controlled by the Disease Control and Prevention (CDC) Centers. The ILI360

level is announced by CDC weekly for every state of the USA according to the pro-

portion of outpatient about ILI. A flu outbreak event illustration is shown as: (STATE,

COUNTRY, WEEK)= (“New York”, “USA”, “07-14-2014 to 07-20-2014”).

(2) Haze event dataset. 10% of the Weibo data from 04-11-2014 to 01-11-2015

are obtained randomly, more than 1,43 billion tweets are included. Besides, we delete365

the tweets which have one or zero keyword from a set of 68 keywords about haze event

obtained based on the experts. Finally, 350 thousand tweets which are posted by 49,644

users are acquired. In terms of the relations of users and tweets, a user-user network

which has 149,408 edges is built. For every user and every day, a p-value mentioned

above is computed based on the approach in [33] for every keyword. In all, correspond370

with the 276 days from 04-11-2014 to 01-11-2015, there are 276 snapshot graphs.

Furthermore, we obtain the GSR of 9,384 haze event records (level ≥ 3) from official

websites. Moreover, a GSR record illustration is shown as: (Province, COUNTRY,

DAY) = (“Tianjin”, “China”, “12-11-2014”). The two kinds of different time slices,

namely week and day, are selected corresponding to the event report interval of official375

in the two different datasets.

The Proposed GraphScan Approach and Baseline Methods. The approach,

namely GraphScan, is proposed in this paper based on the tree decomposition for event

detection and forecasting in social media networks. In the experiments, 10-fold cross

validation is employed to obtain the best relevant parameters. In detail, the threshold th380

is denoted as 10, the parameter αmax is set as 0.15. Moreover, in order to evaluate the

performance of the GraphScan approach, four competition approaches are considered,
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including EventTree [60], Meden [22], HkS [61] and Latent Geographical Topic Anal-

ysis (LGTA)[62]. Furthermore, the related parameters of the papers are tuned strictly

following the approaches mentioned by original authors in their works. Specifically,385

EventTree generalizes the event detection problem based on two kinds of formulations

of graph theoretic. One of them obtains the correlation of the event by employing the

sum of distances of all event nodes. Moreover, this can be transform to an MaxCut

problem. The other one obtains the correlation by employing a minimum distance tree

and results in the PCST problem which can be solved by employing the existing ap-390

proximation algorithms [60]. Meden defines an efficient heuristic approach and a tight

upper bound for approximating the heaviest dynamic subgraphs (most anomalous sub-

graphs in this work) [22]. Hsk develops an efficient approximate approach for solving

the problem of heaviest k-subgraph to discover the event in a graph constructed starting

from posts of users [61]. LGTA is a novel location and text joint approach which com-395

bines the geographical clustering approach and topic model together. Moreover, LGTA

can find the high quality geographical anomaly and estimate the anomaly distributions

in different geographical locations.

Performance Metrics. Firstly, the runtime of our proposed GraphScan approach

and all baseline approaches are compared. Moreover, the related performance metrics400

employed for event detection and forecasting include: (1) FPR = FP/(FP+TN); (2) TPR

= TP/(TP+FN) for both event detection and event forecasting; (3) Event detection lag

time; (4) Event forecasting lead time, where FP, TP, TN, FN, FPR and TPR refer to

false positive, true positive, true negative, false negative, false positive rate and true

positive rate respectively.405

Moreover, in the experiments, the event detection and forecasting results are re-

ported as the form of (date, location), where “location” represents the state of United

States in the flu outbreak dataset or “location” denotes the province of China in the

Haze dataset. For every Gold Standard Reports event, test whether: (1) Each approach

has a report in the state or province within seven time slices before the domain spe-410

cific event, namely “predicted”; (2) Each approach has a report in the state or province

within seven time slices after the domain specific event, namely “detected”; (3) Each

approach has no report in the state or province within seven time slices after or before
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Figure 4: An illustration of the transformation from the detected anomaly subgraph to the haze event de-

tection and forecasting reports of the provinces in China from Dec. 25, 2014. Specifically, the detected

connected anomalous subgraph is comprised of the blue nodes of users and is connected by the blue lines.

The relations between users and the provinces are connected by the red lines. The red nodes denote the

successful detected and forecasted haze events in these provinces, the green nodes refer to the provinces that

do not report haze event alerts.

the domain specific event, namely “undetected”.

5.2. Event Detection and Forecasting Results415

In this subsection, we first introduce the transformation from detected anomalous

subgraphs to event detection and forecasting results, and then present the comparison

of the runtime and accuracy of the event detection and forecasting among all above

approaches.

Transformation from Detected Anomaly Subgraphs to Reported Event Detec-420

tion and Forecasting Results. Each of the above approaches (the GraphScan approach

and the four baseline approaches) outputs a detected user subgraph with the maximized

value of the objective function proposed in Section 4.1 for every time slice. In every

subgraph, some locations are retrieved, where every location leads to a detected or

forecasted event alert. As shown in Figure 4, an illustration of transformation from the425

detected abnormal subgraph to the reported haze event results of provinces from 12-25-

2014 in China is presented. The detected subgraph is comprised of blue nodes where

each node refers to a user in the social media networks, and the red nodes are the trans-
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(a) Runtime based on haze event dataset. (b) Runtime based on flu event dataset.

Figure 5: The runtime comparison of all competition approaches, including GraphScan, EventTree, Meden,

LGTA and HsK.

formed provinces of China. Moreover, the red nodes denote the successful detected and

forecasted haze events, and the green nodes denote that there are not reported results in430

these regions. There may be few errors since that there are few negative contents, e.g.,

some ongoing events may be discussed by some users in their adjacent regions.

The Runtime Comparison of Competition Approaches. The comparison of the

average runtime between the GraphScan framework and all baseline approaches are

presented in Figure 5. The results shows that the LGTA runtime is obvious longer435

than our GraphScan approach in both two datasets, and the runtime of EventTree, HsK

and Meden are similar to GraphScan. GraphScan outperforms the baseline approaches.

Moreover, once the tree decomposition is completed and there are lots of data from dif-

ferent time slices, the more time slices, the shorter run time compared with the existing

baseline approaches. The main reason is that the tree decomposition downscales the440

search space, and as a result, the anomalous subgraphs can be obtained with less time

based on the tree of bags. Moreover, as time slices increase, the proportion of time

occupied by tree decomposition decreases.

The Analysis of Event Detection and Forecasting Results. We evaluate the

performance of the GrapScan approach and all other approaches using two different445

datasets. The results are shown in Figure 6 and Figure 7 respectively.

(1) For haze event dataset, the results of haze event detection and forecasting of
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(a) FPR vs TPR(Fo.)

(b) FPR vs TPR(Fo. & De.)

(c) FPR vs Lead Time(Fo.)

(d) FPR vs Lag Time(De.)

Figure 6: The comparison between the GraphScan and baseline approaches using haze event dataset.
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all above approaches are presented in Figure 6. This figure shows that the comparison

of the results at different false positive rate for haze event detection and forecasting

tasks. The results show that the GraphScan approach has achieved higher true posi-450

tive rate for haze event forecasting compared with the baseline methods, and higher

true positive rate for both haze event forecasting and detection than all the comparison

approaches. Moreover, there is a trend that the margin between the true positive rate

results of GraphScan and the results obtained from all comparison approaches contin-

uously increases for haze event detection and forecasting when the false positive rate455

increases. Specifically, the margin of forecasting is nearly 10% as presented in Figure

6(a). The proposed GraphScan approach achieves the longer lead time for haze event

forecasting as shown in Figure 6(c). Moreover, the GraphScan approach also obtain

the shorter lag time for haze event detection than comparison approaches as shown in

Figure 6(d).460

(2) For flu outbreak dataset, results of the flu outbreak event detection and forecast-

ing of all above approaches are presented in Figure 7. The results also show that the

proposed GraphScan approach achieves higher true positive rate for flu outbreak event

forecasting than baseline approaches, and higher true positive rate for flu outbreak

event forecasting and detection compared with all comparison approaches. Further-465

more, the margin between the true positive rate of GraphScan and that of all comparison

methods continuously increases for flu outbreak event detection and forecasting when

the false positive rate increases. As presented in Figure 7(a), the margin of flu outbreak

event forecasting is greater than 10%. The margin of event detection and forecasting

is greater than 10% as presented in Figure 7(b). Moreover, the proposed GraphScan470

approach obtains longer lead time for flu outbreak event forecasting as shown in Figure

7(c). Finally, Figure 7(d) shows that GraphScan also gets the shorter lag time for flu

outbreak event detection than all baseline approaches at different false positive rates.

To sum up, the proposed GraphScan approach decreases the scale of problem dra-

matically and outperforms the baseline approaches. Moreover, besides the two net-475

works used in the experiments, the GraphScan approach can be used for a wide variety

of other types of networks and applications, e.g., for congestion detection in road traffic

network.
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(a) FPR vs TPR(Fo.)

(b) FPR vs TPR(Fo. & De.)

(c) FPR vs Lead Time(Fo.)

(d) FPR vs Lag Time(De.)

Figure 7: The comparison between GraphScan and other approaches based on the flu outbreak dataset.
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5.3. Case Study: Haze Event Detection and Forecasting

In order to better present the experimental results of the proposed GraphScan frame-480

work, we show an example of haze event detection and forecasting on 2015-01-02 in

China in Figure 9. In this figure, the ground truth and the haze event detection and

forecasting results obtained from GraphScan approach are presented. Moreover, in

the subfigures, each individual region denotes a province of China. As shown in this

figure, almost all of the haze events from different provinces have been successful de-485

tected and forecasted. There are few deviations which may be caused by the existence

of some negative posts, e.g., some events may be discussed by some users in their

adjacent areas. On the other hand, this case vividly reflects the performance of the

proposed approach for both event detection and event forecasting in attributed social

media networks.490

6. Conclusion and Future Work

This paper proposes an efficient approach, GraphScan, for event detection and fore-

casting using the anomalous connected subgraph detection in social media networks.

In GraphScan, we first generalize the scan statistics and then make several contribu-

tions to find the anomalous subgraph. Specifically, we first employ tree decomposition495

to divide the graph into a set of smaller groups, namely bags, and at the same time we

arrange them in a tree structure, through which we can decrease the scale of problem

dramatically. Then an efficient approximation algorithm is proposed for solving the

problem of the anomalous subgraph detection based on the tree of bags obtained from

the tree decomposition approach. We evaluate the proposed approach using two dif-500

ferent datasets. The results show that GraphScan outperforms existing approaches in

both event detection and forecasting. In future, we will extend GraphScan to discover

the abnormal subgraphs that evolve over time by leveraging time series heterogeneous

graphs.
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(a) The ground truth regions with haze events marked by

orange based on GSR.

(b) The regions with detected haze events marked by red

based on GraphScan approach.

(c) The regions with forecasted haze events marked by

green based on GraphScan approach.

Figure 8: An illustration of the comparison of the detected and forecasted haze event results based on the

proposed GraphScan approach and the haze event ground truth based on GSR on 2015-01-02 in China. In

these subfigures, every individual region denotes a province of China.
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