
Towards Best Secure Coding Practice for
Implementing SSL/TLS

Mohannad Alhanahnah, Qiben Yan
Department of Computer Science and Engineering

University of Nebraska-Lincoln, Lincoln, NE, USA (Email: yan@unl.edu)

Abstract—Developers often make mistakes while incorporating
SSL/TLS functionality in their applications due to the com-
plication in implementing SSL/TLS and their fast prototyping
requirement. Insecure implementations of SSL/TLS are subject
to different types of Man in The Middle (MiTM) attacks, which
ultimately makes the communication between the two parties
vulnerable to eavesdropping and hijacking attacks, thereby vio-
lating confidentiality and integrity of the exchanged information.
This paper aims to support developers in detecting insecure
SSL/TLS implementation in their codes by utilizing a low-cost
cross-language static analysis tool called PMD. In the end, two
insecure implementations of SSL/TLS have been identified, and
subsequently a new PMD rule set is created. This rule set consists
of three rules for addressing hostname validation vulnerability and
certificate validation vulnerability. The rules have been evaluated
over 1, 517 code snippets obtained from Stack Overflow, and
the results show that 71% of the code snippets contain insecure
SSL/TLS patterns. The detection rate of our approach is 100%,
while it detects 165 violations inside the vulnerable code snippets
in total.

Index Terms—SSL/TLS, certificate validation, static analysis.

I. INTRODUCTION

Developers, even experienced developers, are prone to make
mistakes and not follow the best secure coding practices in
implementing cryptographic APIs in their applications [1], [2].
According to a recent survey [3], 83% of the investigated
269 cryptography related vulnerabilities are caused due to the
misuse of cryptographic APIs by the developers, which brings
serious concerns on the security of the applications.

Secure Socket Layer (SSL) and Transport Layer Secu-
rity (TLS, successor of SSL) are cryptographic mechanisms
for securing the communications between two parties, and
vulnerable implementations of these essential security proto-
cols can be subject to Man in The Middle Attack (MiTM),
which ultimately makes the communications between the two
parties vulnerable to eavesdropping and hijacking attacks,
thereby violating the confidentiality and integrity of the ex-
changed information. Developers also make mistakes while
incorporating off-the-shelf SSL/TLS implmentations in their
applications [4], [5]. Recently, Meng et al. [1] analyze the
posts from Stack Overflow website, and find that developers
have the tendency to integrate vulnerable answers related
to SSL implementation in their applications, because SSL
implementation is sometimes difficult to comprehend without
sufficient security background, and/or they want to quickly
build a prototype in the development environment to catch up
with the stringent project deadline.

Moreover, even though bug finding tools such as PMD [6]
define rules to detect weak implementations and potential
bugs based on predefined rules, some of which check security
properties, e.g., MethodReturnsInternalArray1 and ArrayIs-
StoredDirectly2, these tools including PMD do not contain
rules for detecting weak/vulnerable SSL/TLS implementation
patterns.

Two insecure SSL/TLS implementation patterns have been
identified, including hostname validation vulnerability and
certificate validation vulnerability [5]. Section IV provides
more details about these vulnerable patterns. Meng et al. [1]
further show that 81.8% of examined posts from Stack Over-
flow have endorsed an insecure solution to bypass security
checks by trusting all certificates and/or allowing all host-
names, corresponding to the above two vulnerable patterns.

Addressing the insecure implementation of cryptographic
mechanisms, particularly SSL/TLS implementation, is a press-
ing need. Apparently, allowing developers to detect insecure
implementations in their codes can significantly reduce the
number of insecure applications. Therefore, it is imperative
to provide a tool for developers to produce more secure
code, and thus avoid the potential security incidents such as
Heartbleed [7] and being vulnerable to MiTM attacks.

This paper contributes towards establishing secure coding
practice for developers by developing practical and ready
to use rule sets (consisting of three rules) using PMD to
detect vulnerable SSL/TLS implementations. These rules can
accurately and efficiently identify potential SSL/TLS vulner-
abilities, and help raise developers’ awareness of insecure
SSL/TLS implementation patterns.

II. BACKGROUND

This section describes background knowledge about static
analysis tools for detecting bugs, and introduces our criteria
for selecting the tool to implement our detection rules. Static
analysis and dynamic analysis solutions have been introduced
for detecting vulnerability in the applications. Since this work
aims at assisting developers in detecting insecure implemen-
tation of SSL/TLS, we will review and compare some state-
of-the-art solutions proposed for detecting programming bugs
using static analysis techniques.

1Exposing internal arrays directly allows the user to modify some code that
could be critical.

2Constructors and methods receiving arrays should clone objects and store
the copy.

Several open source static analysis tools are presented for
detecting bugs in Java programs, including:

1) FindBugs [8]: is an open source tool for detecting bugs
in Java code. It is a static analysis tool on Java bytecode,
and can be used via command line and integrated into
different IDEs. FindBugs can discover various types of
bugs including problematic coding practice and vulner-
abilities. FindBugs rules can be created using Visitor
pattern (Java API). However, this tool does not detect
insecure SSL/TLS implementation patterns.

2) Hammurapi [9]: is an open source tool for analyzing
Java source code. It can be integrated to IDEs, and is
developed with scalability in mind. Hammurapi employs
Abstract Syntax Tree (AST), where new rules can be
added to this tool, using java code or XML rules. How-
ever, this tool is rather complicated [10], and does not
focus on detecting security vulnerabilities and insecure
implementation patterns.

3) Jlint [11]: is written in C++ for detecting common
programming errors in Java (e.g., race condition). Jlint
performs semantic and syntax analysis on Java bytecode
for accomplishing its duties. Therefore, Jlint is not in-
tended for the check and validation of insecure SSL/TLS
implementation, nor any kind of other security checks.
Although new rules can be integrated into Jlint, it will
require modifying Jlint’s source code [10], which makes
Jlint difficult to expand.

4) PMD: is an open source tool, which is written in Java
and it checks Java source code for a set of predefined
bugs. PMD can be used through command line, and
graphical user interface via the available plugins for
various IDEs. PMD constructs Abstract Syntax Tree
(AST), and then examines the constructed AST for
detecting bugs. As mentioned in Section I, PMD checks
for some security bugs, but it neither checks insecure
cryptographic mechanisms, nor examines SSL/TLS im-
plementations. PMD rules can be defined using Java
code (Visitor pattern) or XPath queries. This provides
more flexibility and makes it easier for extension.

We define two selection criteria for identifying the optimal
tool to develop our detection rules. The tool should be:

1) open source and is still actively supported by the com-
munity.

2) easy-to-use and facilitating the integration of new rules.
Accordingly, PMD has been selected for implementing

our new rules to detect insecure SSL/TLS implementations,
because PMD is an open source tool, and can be easily
expanded with new rule sets. Unlike other tools that require
changing the source codes of the tools, or are limited to a
specific method for adding new rules, PMD is flexible, easy-
to use, and deemed as a cross-architectural analysis tool, as it
can analyze different programming languages.

III. INSECURE SSL/TLS PATTERNS

This section explains the commonly identified SSL/TLS
vulnerabilities, and describes the justification behind selecting

those vulnerabilities. Then, we present the code snippets that
represent each vulnerability. Two insecure implementations
of SSL/TLS have been widely discussed and reported in the
literature [1], [4], [5], [12], [13]. Figure 1 summarizes these
insecure patterns and a detailed description about each pattern
is as follows:

1) Certificate validation vulnerability: the certificate and all
Certificate Authorities (CAs) in the certificate chain of
CAs are trusted and not being verified. As illustrated
in Listing 1, method (checkServerTrusted) does not
perform any verification. To fix the vulnerability, it
should go over the chain of CAs that are included in the
certificate, and verifies the validity of each CA in the
chain until reaching the root CA. Otherwise, an attacker
can replace the original certificate of the server with a
self-signed certificate to be accepted by the client, since
the certificate chain is not verified. As a result, MiTM
attack can be established.

2) Hostname validation vulnerability: two insecure patterns
have been identified under this vulnerability. The last
line in Listing 2 shows the case when the developer
not only fails to validate the hostname, but he/she
also allows trusting all hostnames. In Listing 3, host
verification is not performed at all, because the method
(verify) does nothing and always returns true. These
are two most commonly observed vulnerabilities related
to hostname validation, the existence of which allows
MiTM attackers to eavesdrop and hijack the communi-
cations, by allowing an attacker to impersonate the host.

SSL_Vuln_Ruleset

TrustingAll_CAs Verify method
ALLOW_ALL_HOSTN

AME_VERIFIER

Hostname validation
vulnerability

Certificate validation
vulnerability

Fig. 1. Insecure SSL/TLS implementation patterns

Listing 1
TRUSTING ALL CERTIFICATES PATTERN

public void
checkServerTrusted(X509Certificate[]
chain, String authType) throws
CertificateException {

//do nothing
}

Listing 2
ALLOWING ALL HOSTNAMES PATTERN #1

SSLSocketFactory sf = new
MySSLSocketFactory(trustStore);

sf.setHostnameVerifier(SSLSocketFactory.
ALLOW_ALL_HOSTNAME_VERIFIER);

Listing 3
ALLOWING ALL HOSTNAMES PATTERN #2

HostnameVerifier hostnameVerifier = new
HostnameVerifier() {

@Override
public boolean verify(String hostname,

SSLSession session) {
return true;

}
}

IV. PROPOSED PMD RULESETS

The goal of this work is to create new rules for detecting
insecure SSL/TLS implementation patterns. In this section, we
describe the architecture of PMD and the supported methods
for creating new PMD rules, introduce our assumption, and
demonstrate the proposed PMD rulesets for accurately detect-
ing the insecure SSL/TLS implementation patterns.

A. PMD Rulesets and Rules
Figure 2 illustrates the architecture of PMD, which includes

the newly proposed ruleset (described in Section III). A Java
class is analyzed by generating its Abstract Syntax Tree. The
analyzer then examines the generated AST against a set of
predefined rules, and finally a report will be generated that
displays the detected bugs. Even though Data Flow Analysis
(DFA) has been integrated into PMD, PMD has not supported
creating rules based on DFA yet. PMD rules are organized
based on different categories (formally known as Rulesets),
while each ruleset contains several rules that address a single
bug. Therefore, each rule possesses several properties like a
description of the bug, the priority, and the detection rule.

PMD Rulesets

Java Class

PMD Engine

AST
Generator Analyzer

SSL_Vuln_Ruleset

TrustingAll_CAs Verify Method
ALLOW_ALL_HOS
TNAME_VERIFIER

Hostname validation
vulnerability

Certificate
validation

vulnerability

SSL_Vuln_
Ruleset

Fig. 2. PMD architecture and the proposed PMD rulesets (SSL Vuln Ruleset)

We extend the PMD rules by adding a novel ruleset, which
consists of three rules for detecting the selected insecure
SSL/TLS patterns. Figure 3 depicts the structure of PMD rules.

PMD Ruleset

PMD Rule 1 PMD Rule 2 PMD Rule n…...

Fig. 3. PMD ruleset structure

As mentioned earlier, one of the main advantages of using
PMD is the support for different methods to create new rules.
In this paper, two methods can be used for creating new PMD
rule set and rules:

1- Java class: PMD rule can be written as a Java class
that extends AbstractJavaRule, and Visitor API can then be
used for inspecting some properties in the generated AST of
the class under analysis. Then, this rule class can be declared
under a specific PMD ruleset.

2- XPath quires: this method treats the generated AST
as an XML file, then we can write XPath queries to find
specific patterns. PMD provides a handy tool for designing
XPath queries called PMD rule designer,which can be used
for generating the AST for the targeted pattern and creating
the XPath query. Listing 4 presents an XPath that have been
created using PMD rule designer for the insecure pattern
presented in Listing 1.

Listing 4
ALLOWING ALL HOSTNAMES PATTERN #2

1 //MethodDeclaration[@Name=’checkServerTrusted’
2 and
3 Block[count(*) = 0]]

In this paper, XPath method is utilized for creating the rules,
and PMD rule designer has facilitated and simplified the rule
creation process. The designer tool contains four windows,
namely the source code (top-left), XPath query (top-right),
AST & DFA (bottom-left), and the result of XPath query
(bottom-right). Our main assumption here is that the develop-
ers strive to detect any insecure implementations, and develop
more secure applications. This is a reasonable assumption as
most developers have already recognized the importance of the
security of their applications. Therefore, the developers apply
PMD and the corresponding rulesets to detect the security
vulnerabilities in their applications.

Here are the detailed steps for the developers to construct
the SSL Vuln Ruleset to detect SSL/TLS implementation vul-
nerabilities:

1) Obtaining the source code of PMD, as we want to add
new rules, it should be rebuilt again using Maven after
adding new rules.

2) Using the aforementioned insecure patterns (Listings1-
3) in the source code window of PMD rule designer to

generate new rules.
3) Generating the AST for the provided source code. As

depicted in the AST window, AST is treated as XML
file, which consists of nodes and each node owns specific
properties. Accordingly, the XPath query can be created.

4) The XPath query is then generated (buttom-right win-
dow), which relates to the matched pattern in the
source code XPath query in this example (Listing 4)
is simplified for clarity, but more involved matching
criteria can be integrated for deriving more accurate
results and avoid false positive results. For instance,
checkServerTrusted() contains two parameters, and the
data type of each parameter needs to be identified. The
developer can definitely fool this XPath query by adding
useless statements (e.g., print statements) within the
body of checkServerTrusted(). However, this contradicts
our assumption that developers have the intention to
identify insecure implementations (i.e., the developer has
no malicious intent).

5) After making sure the XPath query works as intended,
a new rule can be added to the SSL Vuln Ruleset.
The ruleset is included in an XML file that contains
the definition of a set of rules. The default location
of all Java rulesets is under the following directory
PMD-java/src/main/resources/rulesets/java.

6) The new SSL Vuln Ruleset location should be declared
in the text file rulesets.properties, which in-
structs PMD about the location of all existing rulesets.

Eclipse PMD plug-in is another easier way for creating the
ruleset and its rules. But this approach limits the usage of
the rule into a dedicated machine, and reduces automation
capabilities for running the evaluation, especially over a large
number of Java classes. In our experiment, we add a single
rule using Eclipse plug-in, and the detection result is presented
in Figure 4. The error message displays “Consider verifying
the intended certificates and not allowing all certificates by
updating checkServerTrusted() method”, which is in fact the
suggestion for resolving the SSL/TLS vulnerability. PMD has
successfully detected checkServerTrusted() is implemented in
an insecure manner. PMD also shows other details about the
detected violations, such as the line number, the name of the
violated rule, etc. Suggestions for fixing this error can be
also incorporated within the details of this alert, which would
greatly assist the developers not only in detecting insecure
patterns, but also in resolving them.

Fig. 4. PMD analysis results on Eclipse after adding a new rule
Listing 5 presents the definition of one of the detection rules

in our SSL Vuln Ruleset. This rule detects insecure implemen-
tations of checkServerTrusted(). Line 3 shows the definition
of the ruleset, which includes the the name. The actual rule is
defined between Lines 9-29, and Line 15 states the priority of

this rule. Finally, (Lines 18-22) contain the location where the
XPath query (generated using PMD designer) is defined. To
this end, we prove that PMD can tremendously facilitate the
process of creating new rules for detecting new bugs, including
SSL/TLS implementation bugs.

Listing 5
DEFINITION OF SSL VULN RULESET

1 <?xml version="1.0"?>
2

3 <ruleset name="SSL_Vuln_Ruleset">
4

5 <description>
6 This ruleset detects insecure implementation

of SSL/TLS
7 </description>
8

9 <rule name="TrustingAllCAs"
10 language="java"
11 message="Consider verifying the intended

certificates and not allowing all
certificates"

12 <description>
13 This is an insecure implementation of SSL/

TLS, which trusts ALL certificates.
14 </description>
15 <priority>3</priority>
16 <properties>
17 <property name="xpath">
18 <value>
19 <![CDATA[
20 //MethodDeclaration[@Name=’

checkServerTrusted’
21 and Block[count(*) = 0]]]]>
22 </value>
23 </property>
24 </properties>
25 <example>
26 <![CDATA[
27]]>
28 </example>
29 </rule>
30 </ruleset>

V. EVALUATION

This section describes our evaluation approach, including
two research questions, and the results we get to answer each
research question.

We conducted the evaluation over a dataset obtained
from [13]. This dataset consists of 1,517 code snippets ex-
tracted from Stack Overflow website. However, these codes
cover all cryptographic implementations and are not only
limited to SSL/TLS implementations. Hence, we conducted
data filtration over two phases. In the first phase, codes
that contain these keywords (SSL, TLS, ssl, tls, X509 and
x509) are shortlisted. In the end, 597 code snippets have
be shortlisted after this phase. This phase provides us all
code snippets that contain SSL and TLS implementation.
In the second phase, 263 files are obtained, which con-
tain the following keywords (verify, checkServerTrusted, AL-
LOW ALL HOSTNAME VERIFIER). The purpose of this
filtration phase is shortlisting the code snippets that are related
to the insecure patterns. We focus on answering the following
two research questions:

• RQ1: How well do our detection rules perform in prac-
tice, and can they effectively detect the identified insecure
patterns in real-world applications?

• RQ2: What is the runtime performance of PMD after
using our rules?

All experiments have been performed on Ubuntu 16.04
virtual machine and 4GB memory. The modifications have
been performed on the source code of PMD version 5.8.1.

1) Results for RQ1: The total code snippets that have been
analyzed are 263, but 76 snippets could not be parsed correctly
by PMD (will be discussed in Sec VII). For the rest of the
code snippets (263 − 76 = 187), 54 files do not contain any
insecure patterns. We manually investigate some of these files,
and find that they are correctly bypassing our detection rules.
This means the number of True Negative is 54. Therefore,
the total number of the detected (True Positive) insecure
SSL/TLS implementation patterns is (187−54 = 133), which
reflects that %71.12 of the code snippets in our dataset contain
insecure patterns. Figure 5 shows the number of vulnerable
snippets and non-vulnerable snippets.

We also have randomly investigated several code snippets
that have been detected by one of our rules to verify if they
really contain insecure patterns.

71%

29%

Vulnerable Snippets

Not Vulnerable Snippets

Fig. 5. Distribution of vulnerability detection using proposed PMD rulesets

Table I lists the detection results of the proposed
SSL Vuln Ruleset in Figure 1. The most common insecure
patterns are “Trusting All CAs” and “Allowing All Hostname
Verifier”. We discover that several code snippets even contain
more than one insecure patterns.

Figure 6 presents the detection results based on the iden-
tified two categories of SSL/TLS vulnerabilities. The number
of detection alarms does not match the number of vulnerable
code snippets, because as mentioned earlier a single vulnerable
code snippets can contain more than one insecure patterns.

The results show the proposed detection rules have correctly
identified the insecure code snippets, and no code snippets
have been misclassified (no False Positive or False Negative).
Therefore, the both detection precision and recall of our
approach are 100%.

TABLE I
DETECTION RESULTS

Matching Insecure Patterns Matched
Code
Snippets

TrustingAll CAs 43
Verify Method 18
ALLOW ALL HOSTNAME VERIFIER 40
TrustingAll CAs & Verify Method 24
TrustingAll CAs & AL-
LOW ALL HOSTNAME VERIFIER

8

Verify Method & AL-
LOW ALL HOSTNAME VERIFIER

0

75

90

65

70

75

80

85

90

95

Certificate Validation Hostname Validation

D

et
e

ct
io

n
 A

la
rm

s

Fig. 6. Detection results according to the types of SSL/TLS Vulnerabilities

2) Results for RQ2: Measuring the overhead that might be
introduced after using the new rules is crucial. Therefore, we
compute the required time for analyzing the code snippets,
which includes the required time for identifying which rule
has been violated, and the time for parsing the generated
XML report for each code snippet. The total analysis time is
144 seconds for the dataset generated after the two phases of
filtration (263 code snippets). On average, the required time for
analyzing each code snippet against our three rules and parsing
its XML report is 0.55 second, which shows the efficiency of
the proposed method.

VI. RELATED WORK

In this section, we review additional related work. FixDroid
plug-in for Android studio has been developed in [12], which
addresses several limitations in Android Lint tool. It is used
for helping App developers in improving the quality of their
code including insecure implementations. FixDroid attempts to
address the insecure implementations of SSL/TLS. However,
FixDroid only considers a single pattern, which is Improper
HostNameVerifier, while in our solution we consider three
most commonly observed patterns.

Another plug-in called CogniCrypt is developed for as-
sisting developers in generating secure implementation of
crypto APIs [14]. This plug-in automatically generates secure
implementation instead of detecting insecure patterns using
static analysis technique. Although SSL API implementation

is covered by the plug-in, it does not show details about the
type of SSL implementations that have been covered.

HVLearn is a blackbox testing tool for verifying hostname
ins SSL/TLS implementations based on automata learning
algorithms [15]. However, developers do not actually need
blackbox testing techniques for detecting insecure implemen-
tation, as the source code is available. Also, HVLearn focuses
only on detecting one aspect of insecure SSL/TLS patterns.

Other solutions have been developed to detected insecure
implementation of SSL/TLS [5], [16]. However, these solu-
tions intended to analyze released applications and not to assist
developers in detecting insecure patterns while implementing
SSL/TLS APIs.

VII. DISCUSSIONS

In this section, we provide a discussion on three limitation
of our approach for detecting the insecure patterns. First, after
the filtration, we have 187 code snippets, while some of the
snippets cannot be analyzed. Although the current dataset is
sufficient for validating our new rules, in future, we need a
larger dataset for drawing more affirmed conclusions. Also, we
observe the duplications in the code snippets while performing
the manual investigation. Furthermore, we performed a quick
validation over the code snippets that have not been parsed,
and our preliminary analysis shows that the AST of those file
cannot be generated.

Second, even though the discussed tools in Section II does
not consider the particular problem that have been addressed
in this work, we need to adapt and then evaluate these other
tools to compare their performance, efficiency and usability
against our proposed approach.

Finally, as discussed in Section IV, we assume the devel-
opers have the motivation to find any bugs in his/her code,
which is a valid assumption. But there is a possibility that the
developers unintentionally inserts meaningless or debugging
statements, which invalidates our rules. However, this situation
can be handled by adding more conditions to the XPath query
to avoid being inappropriately bypassed. There are also some
cases such as the one presented in Listing 6, where a boolean
variable holding a “true” value is returned rather than an
explicit “true” value. In this case, PMD Data Flow Analysis
should be explored to handle such cases.

Listing 6
OUR RULE FAILS TO DETECT THIS INSECURE PATTERN THAT IS SIMILAR

TO LISTING 3

boolean isTesting = true;
HostnameVerifier hostnameVerifier = new

HostnameVerifier() {
@Override
public boolean verify(String hostname,

SSLSession session) {
return isTesting;

}
}

For future work, we are planning to consider the insecure
implementations of other cryptographic libraries. Also, we will

consider some cases that can not be detected through our
current rules (e.g., Listing 6).

VIII. CONCLUSION

This paper sheds light on a vital implementation issue:
insecure coding practices while implementing SSL/TLS APIs
in Java applications. Two common vulnerabilities have been
identified, while three insecure patterns that represent each vul-
nerability have been defined. We employ PMD static analysis
tool for implementing our detection rules. After comparing
it with other existing open source tools, we adopt the XPath
approach for creating the new rules. In our evaluation with
187 code snippets from Stack Overflow website, we show
that 71% of these code snippets are vulnerable, as they
are discovered to contain various insecure patterns, which
validates the effectiveness of our detection rules.

REFERENCES

[1] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure
coding practices in java: Challenges and vulnerabilities,” arXiv preprint
arXiv:1709.09970, 2017.

[2] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler, and R. Kamath, “Cognicrypt:
Supporting developers in using cryptography,” in Proceedings of the
32nd IEEE/ACM International Conference on Automated Software En-
gineering (ASE ’17) – Tool Demo Track, 2017.

[3] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why does crypto-
graphic software fail?: A case study and open problems,” in Proceedings
of 5th Asia-Pacific Workshop on Systems, ser. APSys ’14. New York,
NY, USA: ACM, 2014, pp. 7:1–7:7.

[4] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in)security,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, ser. CCS ’12. New York,
NY, USA: ACM, 2012, pp. 50–61.

[5] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang,
and Z. Zhang, “Vetting ssl usage in applications with sslint,” in 2015
IEEE Symposium on Security and Privacy, May 2015, pp. 519–534.

[6] “PMD Tool,” https://pmd.github.io/pmd-5.8.1/index.html, accessed at
Nov 17, 2017.

[7] “Heartbleed Bug,” http://heartbleed.com/, accessed at Dec 17, 2017.
[8] “Jlint - find bugs in java programs,” http://findbugs.sourceforge.net/,

accessed at Dec. 2017.
[9] “Jlint - find bugs in java programs,”

http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-
group/products/hammurapi/index.html, accessed at Dec. 2017.

[10] M. Aderhold and A. Kochtchi, “Tailoring pmd to secure coding,” Tech.
Rep., 2013.

[11] “Jlint - find bugs in java programs,” http://jlint.sourceforge.net, accessed
at Dec. 2017.

[12] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl, “A
stitch in time: Supporting android developers in writing secure code,”
2017.

[13] F. Fischer, K. Bttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy paste
on android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP), May 2017, pp. 121–136.

[14] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler et al., “Cognicrypt: supporting de-
velopers in using cryptography,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Press, 2017, pp. 931–936.

[15] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana,
“Hvlearn: Automated black-box analysis of hostname verification in
ssl/tls implementations,” in Proceedings of the 38th IEEE Symposium
on Security & Privacy, 2017.

[16] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in Proceedings of the 21st Annual
Network and Distributed System Security Symposium, 2014.

