PeerClean: Unveiling Peer-to-Peer Botnets through
Dynamic Group Behavior Analysis

Qiben Yan Yao Zheng

Tingting Jiang

Wenjing Lou Y. Thomas Hou

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract—Advanced botnets adopt a peer-to-peer (P2P) infras-
tructure for more resilient command and control (C&C). Tra-
ditional detection techniques become less effective in identifying
bots that communicate via a P2P structure. In this paper, we
present PeerClean, a novel system that detects P2P botnets in real
time using only high-level features extracted from C&C network
flow traffic. PeerClean reliably distinguishes P2P bot-infected
hosts from legitimate P2P hosts by jointly considering flow-
level traffic statistics and network connection patterns. Instead of
working on individual connections or hosts, PeerClean clusters
hosts with similar flow traffic statistics into groups. It then
extracts the collective and dynamic connection patterns of each
group by leveraging a novel dynamic group behavior analysis.
Comparing with the individual host-level connection patterns,
the collective group patterns are more robust and differentiable.
Multi-class classification models are then used to identify differ-
ent types of bots based on the established patterns. To increase
the detection probability, we further propose to train the model
with average group behavior, but to explore the extreme group
behavior for the detection. We evaluate PeerClean on real-world
flow records from a campus network. OQur evaluation shows that
PeerClean is able to achieve high detection rates with few false
positives.

I. INTRODUCTION

Botnet has become a major threat to the health of modern
networks. Through large-scale compromise of end hosts, bot-
masters can commit organized cyber-crimes, such as launching
distributed denial-of-service (DDoS) attacks, sending spams,
performing click frauds, or stealing sensitive information.

The C&C channel is one of the most essential components
of a botnet, through which a botmaster manages a bot army
of compromised end hosts. One common type of C&C infras-
tructure relies on a central C&C server, which has recently
drawn a great deal of attention from security researchers and
law enforcement forces. From the attacker’s point of view,
such centralized architecture suffers from a single point of
failure problem, because if the C&C server is identified and
taken down, the botmaster will lose control over the whole
botnet. As a response, sophisticated botnet developers attempt
to build more advanced and resilient P2P C&C infrastructures.
P2P C&C allows the bots to exchange C&C messages via
their connected peers in a P2P manner. Therefore, despite
of numerous takedown attempts, P2P botnets kept reviving.
Some notable examples of active P2P botnets include Sality,
ZeroAccess, and Kelihos, which have survived in the wild for
a long time and will likely continue to be alive in the near
future.

To date, a few solutions have been proposed to detect P2P
botnets [1]-[4]. Host-level malware detection techniques such
as traditional signature-based approaches and more recently

This work was supported in part by the US National Science Foundation.
T. Jiang’s work has been supported by an NSF Graduate Research Fellowship.

behavior-based approaches [5] have been designed. However,
these approaches are not only vulnerable to advanced malware
obfuscation or polymorphism, but they also require host-
side installation. So they are unattractive to the network
administrators who aim to crack down a network-wide botnet.
Alternatively, network-level techniques have been proposed to
correlate the traffic patterns of suspicious bots [2], [3], [6]-
[9] or collect network communication graphs to identify P2P
bots [1], [10]. Some of them apply deep packet inspection
(DPI), which is not only computationally expensive, but is
also evadable through encryption. Other approaches are based
upon network flow traffic analysis. For instance, Yen et al.
[2] described an algorithm to differentiate P2P file sharing
applications with P2P bots based on network traffic features
such as traffic volume, peer churn rate, and interstitial time
distribution. Recently, Zhang et al. [3] developed a botnet
detection system to extract statistical fingerprints for every
host, and identify the bots based on a set of traffic features
such as communication persistency, fingerprint similarity, and
shared contacts’ number. However, the traffic features used
in these approaches are not robust enough to identify bots
in a dynamic network, as observed from our experiments.
On the other hand, a communication graph-based approach
[1] seems more reliable, but it can only identify structural
P2P subgraphs regardless of whether the subgraphs contain
bots. Also, it requires a list of honeypot hosts to bootstrap its
detection algorithm, limiting its practicality.

In this paper, we jointly consider two sets of features:
flow traffic statistics and network connection behaviors, to
detect the presence of P2P bots within a monitored network,
such as a campus network or an ISP network. We introduce
PeerClean to utilize the best of these feature sets via a
novel combination of clustering and classification. PeerClean
identifies P2P bots by detecting their C&C communication
patterns that characterize the botnets, regardless of how they
perform malicious activities. In order to accomplish this goal,
we extract the flow traffic statistics from the network flow
data, based on which we group the hosts with similar traffic
patterns into the same cluster. PeerClean leverages the fact that
bots from the same botnet use the same C&C communication
protocol which produces similar traffic patterns [3], [7], and
the same type of bots thereby are highly likely to be included
in the same cluster.

However, flow traffic statistical features are not robust and
reliable enough to distinguish specific bots from benign hosts
due to the dynamics exhibited in the Internet traffic. Therefore,
PeerClean further incorporates more robust network connec-
tion patterns for a more accurate bot identification. Rather
than exploring the connection persistency of every individual
bot [2] or the number of overlapping peers of every bot pair
[3], we propose a dynamic group behavior analysis (DGBA)

P2P Apps ~
Labeled DGBA L SVM
P2P Bots Flow Data > Training Training
SVM
Model
Network Flowz r P2P Host l: Flow Feature I: P2P Host DGBA I: SVM Refined Bot E /Labeled PZP;
/ Data Identification Extraction Clustering K Detection Classification — > Identification Bots
Layer 1 Layer 2 Layer 3

Fig. 1: PeerClean system flow

method to investigate the group-level connection behaviors
inside botnets. We apply DGBA to every host cluster so as
to extract the aggregated connection features. PeerClean then
trains a support vector machine (SVM) classifier using the
group-level training features, and labels each cluster using the
SVM classifier subsequently. To improve the detection perfor-
mance, we train the classifier using average group behavior,
but explore the extreme group behavior for the detection. After
detecting botnets, PeerClean is able to specify the botnet types.
Furthermore, PeerClean is tailored to support real-time bot
detection, and to enable a quick response to the bot infections.
Specifically, this paper makes the following contributions:

« We propose a novel botnet detection framework, Peer-
Clean, using the high-level features extracted from net-
work flow data based on the flow-level traffic statistics
and dynamic network connection patterns. Our method
explores the best of these different features with a novel
combination of unsupervised (clustering) and supervised
(classification) machine learning methods.

o We design a dynamic group behavior analysis method to
automatically extract the collective connection features
from P2P host clusters. We show through experiments
that the extracted group features are robust, reliable, and
effective in identifying various types of P2P botnets.

o« We develop a prototype system, and evaluate the sys-
tem using network traces from various real-world botnet
families, as well as background traces from a large
campus network. We demonstrate through experiments
that PeerClean can identify different types of bots with
up to 95.8% accuracy, and negligible false positive rate.

II. OVERVIEW OF PEERCLEAN

Our primary goal is to design a detection system for the
network administrators to identify P2P bots in a monitored
network. Toward that goal, we present our data-driven detec-
tion framework, PeerClean, which exploits network flow data
captured at the edge of the network.

Figure 1 shows the system flow of PeerClean. The upper
part of the figure describes the training process, with inputs
from two labeled data sets: one is a subset of monitored traffic
data that is from the labeled legitimate P2P hosts, and the
other one contains the data from the labeled P2P bots (we
discuss the acquisition of training data in §IV-A). For each
type of legitimate P2P hosts and P2P bots, PeerClean then
performs DGBA training to extract a collection of group-
level connection features aggregated from all the hosts of this
specific type, and trains a SVM classification model using the
extracted group-level features. The bottom part of the figure
presents the detection process with input of monitored traffic
data. After identifying the P2P hosts in the network, PeerClean
carries out P2P host clustering using the statistical features of
their traffic flows, and applies DGBA detection to every cluster

of interest with the goal of detecting clusters containing bots.
Finally, the refined bot identification picks out the bots from
the clusters for further processing. PeerClean can be regarded
as a three-layer system, with the first-layer modules processing
data on a per-host basis, the second-layer modules processing
data on a per-cluster/host group basis, while the third-layer
modules further handling the identified bot clusters.

Input Data: The input data set consists of a training data
set and a testing data set of NetFlow flow record format. Each
flow record holds a number of attributes, such as: starting time,
flow duration, source and destination IP address, source and
destination ports, the number of bytes and packets transferred,
TCP flags, etc. The testing data is the real-time NetFlow
traffic traces captured at the gateway routers of a campus
(or enterprise, ISP) network, while the training data set is
constructed by combining the traffic from identified P2P bots
and legitimate P2P hosts.

P2P Host Identification: = The high-speed networks gener-
ate a huge amount of NetFlow data, which would potentially
overwhelm the processing capability of our detection system.
Thus, the first step of PeerClean is to reduce the traffic volume
by filtering out the hosts that are unlikely to be related to P2P
communications. Our approach is based on the observation
that the hosts engaging in P2P communications exhibit high
failed connection rates mainly caused by the high peer churn
rate [11]. Therefore, we compute the percentage of failed
connections inside each time epoch (e.g. 1 hour). The hosts
with failed connection rate higher than an empirical threshold
are selected as candidate P2P hosts [2]. This selection process
allows us to retain hosts engaging in P2P communications,
while eliminating a vast majority of non-P2P hosts.
Detection Period: Since bot memberships are dynamically
changing with some bots being cleaned up and others be-
ing newly infected, we propose to perform bot detection
periodically. PeerClean supports various lengths of detection
period, as long as bots generate enough network flows with
representable flow and connection features during that period.
In this paper, we select one hour as the detection period
in response to agile bot infections. Specifically, PeerClean
produces one SVM model for each hour of the day. Then, by
examining each hour of testing traces collected from the edge
routers, PeerClean identifies specific types of bots existing
in the network within that hour. In this manner, PeerClean
enables real time bot detection which supports a fast response
to the bot infections (i.e. one hour response time in this paper).

III. SYSTEM DESIGN

PeerClean systematically integrates two categories of fea-
tures including flow statistical features and network connection
features. The effectiveness of PeerClean largely hinges upon
the discriminative ability of the selected features to set apart
various P2P bots and legitimate P2P hosts. In this section, we

[Feature [

Descriptions |

[Feature [[Descriptions |

The distribution of the number of
bytes per flow sent from (received
by) a host

Bytes-per-flow pattern

The distribution of incoming (out-
going) flow interarrival time at a
host

Flow interarrival pat-
tern

The distribution of the number of
packets per flow sent from (re-
ceived by) a host

TABLE I: Flow size statistical features

Packets-per-flow
pattern

discuss the rationale behind the feature selection, and look into
the strengths and weaknesses of the selected features. Mean-
while, two machine learning techniques performing clustering
and classification are described, which are used to gather,
identify, and subsequently label the P2P bots.

A. Flow Statistical Features

The performance of host clustering relies on a set of
carefully selected network flow features. A common criti-
cism of early attempts using machine learning methods over
network flow data is that the selected features were often
not robust, resulting in an overfit model to some specific
features of the training set, such as a particular port or IP
address used by a bot. Dedicated bots can simply adapt their
used ports and IP addresses to impair the flow analysis. To
overcome such overfitting issue, we select flow features that
are both robust and distinctive among the botnets, including
flow size statistical features and host access pattern features.
Note that, at this stage, we only extract the flow features of
candidate P2P hosts who survived the P2P host identification
process.

Flow Size Statistical Features: Flow size statistical fea-
tures capture the flow size distribution for both outgoing
flows and incoming flows at a specific host. Let Fi(Ob)

{f;Ob) }i=1.m and Fflb) = {f;lb)}jzl,,n denote the series of
flows sent from or received by host ¢ inside . We consider the
basic flow size related features such as: bytes-per-flow (bpf)
feature and packets-per-flow (ppf) feature, as shown in Table
I. Note that each feature records the distribution of flow sizes
among all outgoing (incoming) flows at the corresponding
host. In particular, we extract the mean Hopon) s fhp(iv) and

the standard deviation o (o), 0 ac) of bpf and ppf from both

the outgoing and incomiﬁg flows respectively. This group of
features characterizes the regularity of traffic flow size over
time for each host.

Host Access Pattern Features: We introduce host access
pattern features to capture the flow arrival patterns. Table II
lists the adopted features, including flow interarrival pattern,

flow density pattern, and diurnal pattern. Assume Ti(Ob) (Ti(Zb))
is a time series of starting time of outgoing (incoming) flows
from host ¢ inside F, based on which we can compute a
sequence of flow interarrival time Ii(Ob) (Ii(lb)) by taking the
difference of the starting time of two consecutive flows. Flow
interarrival feature represents the statistical features of flow in-
terarrival time sequences, including the minimum, maximum,
median, and standard deviation.

Different from all the aforementioned features which are
extracted inside each detection period F, the last two types
of features, flow density pattern and diurnal pattern, are
determined anew every day. In this work, we select three hours
as a time unit with one full day divided into 8 equal time

The fraction of time units with
more than x flows at a host

The percentage of flow numbers in
the peak (dip) period of the day at
a host

TABLE II: Host access pattern features

Flow density pattern

Diurnal pattern

units. We denote the number of flows to/from a certain host
in each time unit during a day as N;,j7 = 1,2,---,8. Flow
density pattern records the fraction of time units with equal

. 8 N,; >
or more than x flows per day, i.e., W, where ()

is a step function yielding one when N; > x holds, and zero
otherwise. In our prototype, x is empirically set as 1000. In
addition, to assess whether the flow arrival demonstrates a
diurnal pattern, we define two ratios, the number of flows in
the peak period and the number of flows in the dip period
respectively over the total number of flows of the day ! , as

the diurnal pattern features, i.e., 8N 2 N and 8N D - These
j=14YJ j=1"YJ
two types of features are inserted as additional features for the

last hour of the day, further elevating the detection probability.

B. P2P Host Clustering

The rationale behind host clustering comes from the follow-
ing observation: bots that belong to the same botnet run the
same P2P communication protocol and share the same C&C
messages. Affinity Propagation (AP) is a recently proposed
partition-based clustering method by Frey and Dueck [12].
Compared with K-means, one of the most popular clustering
methods, the performance of AP does not rely on an initial
selection of exemplars® or cluster centers. Rather than speci-
fying the number of clusters, AP can automatically determine
the number of clusters solely based on the data.

The similarity s(i, k) of AP indicates how well data point
xp 1s suited to be the exemplar of data point x;. With the
goal of minimizing the squared error, we use negative squared
error (Euclidean distance) as the similarity measure, i.e.,
s(i, k) = —||lz; — x1]|*. Since unsupervised learning is a no-
toriously difficult task, it seems impossible to obtain a perfect
clustering result. As a result, in addition to several clearly
separated bot clusters (i.e. clusters of bots) and benign clusters
(i.e. clusters of benign hosts), we expect some clusters to
include both benign hosts and bots, as shown in Section IV-B,
which we call mixed clusters. For ease of presentation, bot
clusters and mixed clusters are collectively called bot-included
clusters. In the following section, we will show how we
use supervised learning to identify and further examine bot-
included clusters, as well as the method to pinpoint bots inside
them.

C. Dynamic Group Behavior Analysis

In this section, we introduce DGBA with the objective
of identifying bot-included clusters. DGBA is based on our

I'The peak time is expressed as P = arg max; N; with flow amount Np =
max; N;, and the dip time as D = arg min; N; with flow amount Np =
mianj,] = 1, te ,8.

2Exemplar represents for the cluster center that best accounts for the data
in the cluster [12].

18000

r
S 16000 W 04
o — 0.35
2 14000 1 o
= é 03
S 12000
© g 0.25
B 10000 5 o
=} b 0.2
(U]
© 8000 S ois
o ©
g 6000 = 2 o1
£ = v
£ 4000 - + L 005
S —— —
Z 2000 0
Emule Host Pair Zero:
0
N & & Q &)
& o¥ & o S &
& N ©
/\/Q/

access Host Emule Cluster Zeroaccess
Pair Cluster

(a) (W)

Fig. 3: (a): The shared neighbor ratio of one Emule host pair compares with that of

Fig. 2: Cluster connectivity feature

intuition that the bot-included clusters have cluster-level ag-
gregated characteristics that are distinguishable from benign
clusters. Whereas the connection activity of a single bot is
highly dynamic and hard to distinguish, we believe the group
connection behavior will help us identify bots’ communica-
tions.

DGBA training and DGBA detection are two modules that
extract features from the training set and testing set respec-
tively. The purpose of DGBA training is to extract the repre-
sentative group behavior from a collection of labeled P2P hosts
to build SVM classifiers, whereas DGBA detection searches
for the abnormal behaviors from every unlabeled cluster to
catch P2P bots. Thus, we propose to use different statistics
of the collected host-level features from a group to repre-
sent group-level training and detection features, respectively.
Specifically, the training features capture the average group
behavior, while the detection features capture the extreme
group behavior (i.e. the maximum or the minimum). Note
that all the features below are extracted from the collection
of traces inside each detection period if not otherwise stated.

1) Cluster Connectivity Feature: Cluster connectivity fea-
ture captures the aggregated connectivity of the peers inside
each cluster. A connection between two hosts can be good or
bad. We define a good connection as a successfully established
connection between two hosts, and a bad connection as a
failed connection. We consider a TCP connection as good if
it completes a SYN, SYN/ACK, ACK handshake, and a UDP
connection as good if there is at least one UDP “request”
packet and a consequent UDP “response” packet. We denote
the good connection set of host h; as C; which includes all
the good connections of host h;.

Training feature: The cluster connectivity feature for
DGBA training is defined as the average number of good
connections among all the P2P hosts of each type, ie.,

Zij\il |C;|/M, assuming M hosts of one specific type exist
in the training set.

In order to see the discriminating strength of this feature, we
run an experiment using 24-hour training data (refer to §IV-A
for the data sets used in the experiment) to show the cluster
connectivity features of different P2P bots and legitimate hosts
running various P2P applications. The box-plot results are
shown in Fig. 2, from which we notice different types of P2P
hosts indeed exhibit disparate cluster connectivity features. In
particular, ZeroAccess bot stands out with a significantly larger
amount of good connections. We attribute the difference to
several factors including: (1) the botnet network size; (2) the
botnet peer discovery mechanisms. For instance, the bots in

one Zeroaccess host pair. (b): Group shared neighbor ratio.

a populous network with a more aggressive peer discovery
mechanism are supposed to have more network connections.
Detection feature: The cluster connectivity feature for
DGBA detection is defined as the maximum number of good
connections among all the hosts in the unlabeled cluster, i.e.,
max2.|C;|, assuming M’ hosts in the cluster. Fig. 2 shows a
notable gap between ZeroAccess bots and other types of hosts,
thus this detection feature can help detect the ZeroAccess bots.
2) Shared Neighbor Feature: The shared neighbor feature
captures the amount of shared connections between every
pair of hosts in each cluster. The set of shared neighbors
of host h; and h; can be written as: C;(|C;. We further
define pairwise shared neighbor ratio of a host pair as the
ratio between the number of shared neighbors and the number
of total neighbors, i.e., s;; = ||C; [C;||/||C; UC;]| for the host
pair (hi, h;).
Training feature: Given the above definitions, shared
neighbor feature for DGBA training is represented by group
shared neighbor ratio, simply defined as the average pairwise
shared neighbor ratio among all the host pairs of one type,

ie., Zi,je[l,M],i;éj{Sij/w}' Previous work has adopted
pairwise shared neighbor ratio s;; [3] to distinguish between
bots and benign hosts. However, according to our experiment,
pairwise shared neighbor ratio seems ineffective in identifying
certain pairs of P2P bots. In Fig. 3(a), we compare the pairwise
shared neighbor ratio of an emule host pair (who download the
same file) with that of a ZeroAccess bot pair. We find it almost
impossible to make a distinction between these two pairs,
which brings false positives or false negatives. In contrast,
group shared neighbor ratio clearly differentiates ZeroAccess
bots from the emule hosts with a large gap between them, via
feature aggregation from multiple hosts.

In addition, Fig. 3(b) shows that different types of P2P
bots and P2P hosts exhibit distinguishable shared neighbor
features, where we observe that P2P bots have much higher
group shared neighbor ratios compared with legitimate P2P
hosts. The reason is obvious - the bots from the same botnet
search for the same commands published by the botmaster [3],
which makes their contacted peers more likely to be shared by
other companions. Furthermore, although P2P botnets have a
decentralized C&C architecture, botmasters still strive to make
their P2P network robust against peer churns and provide end-
to-end communication with a minimum delay. This inherent
C&C objective translates into a convergence of contacted peers
by a group of bots to ensure the reliable delivery of C&C
messages. On the other hand, different legitimate P2P hosts
generally search for different contents from their peers, which

200

Number of Significant Connections

100

.
1234
0 Time
-+~Zeroaccess ~*-Kelihos

Number of Significant Connections

Emule Skype Bittorrent

(@ (b)

Sality

5678 9101112131415161718192021222324

Y
o
o

Significant Connection Volatilit
© © o o o o
- N w = w (9]

3 @
O N
& oF &

Fig. 4: (a): Significant connection feature. (b): Significant connection feature of

Kelihos and ZeroAccess bots.

yields a more dispersed peer list.

Detection feature: Correspondingly, the shared neighbor
feature for DGBA detection is defined as the maximal pairwise
shared neighbor ratio among all the host pairs in each cluster,
i.e., MaX; je(1,07),i%5Sij- Lhe shared neighbor feature of every
bot-included cluster is again a distinguishing feature of the
bots, since bots have significantly higher shared neighbor
ratios than benign hosts, which will help discover the presence
of bots in the cluster.

3) Significant Connection Feature: The significant con-
nection (SC) feature captures the amount of hot links in
the network, i.e., the connections that contribute significantly
larger amounts of network flows compared with the other
connections. The SCs extracted from the Internet traffic data
have been used to diagnose the network operation and quickly
identify the anomalous events [13]. Similarly, we try to
identify SCs of bot groups for better understanding the bots’
behaviors and accurately identifying bots’ presence.
Training feature: = We define the SC feature for DGBA
training as the average number of SCs for all the hosts of one
type. Fig. 4 shows the SC features of Sality bots and three
other types of P2P hosts. Compared with Sality bots, these
legitimate P2P hosts produce a larger number of SCs.

This distinctive observation may be attributed to the follow-
ing fact: the SCs in a botnet indicate the existence of some ac-
tive bots that are critical to the P2P botnet infrastructure. These
active bots may be well connected with a high bandwidth
connection, or may be close to the botmaster. Few number
of distinctive connections helps the bots remain stealthy under
the radar of numerous intrusion detection systems. In contrast,
benign P2P hosts yield a much higher number of SCs due to
their unorganized nature.

Interestingly, the traffic flows from ZeroAccess and Kelihos
bots reveal unique SC patterns as shown in Fig. 4(b). ZeroAc-
cess bots simply have none SCs, while Kelihos bots suddenly
generate a large amount of SCs from a “hot” period between
7pm to lam. This period perhaps can be interpreted as a peak
period of C&C message exchanging, with so many suddenly
emerging hot links. The study of this abrupt phenomenon and
the exact origin of SCs of botnets are out of scope of this paper,
but may become research problems on their own rights.
Detection feature: Among all the hosts in the cluster, SC
feature for DGBA detection is defined as the minimal number
of SCs, or the maximal number if it exceeds an empirical
threshold «. Thus in most cases, the SC feature of bot-included
cluster will be dominated by the bots with less SCs. However,
the number of SCs of Kelihos bots skyrockets during the “hot”

Fig. 5: Significant connection volatility

period, which far exceeds that of the normal hosts. Hence, by
setting an appropriate threshold a (e.g. 200), the SC feature
of the bot-included cluster is again a distinguishing feature of
bots.

4) Temporal Feature: Lastly, the temporal feature captures
the dynamic evolvement of SC sets. Instead of performing
feature extraction per one-hour detection period, temporal
features are computed at the end of each day to combat
noise and disturbance, which are represented by significant
connection volatility, measuring whether the cluster has the
same set of SCs over time. We assume the number of distinct
SCs for host h; over the day is U;, and the number of SCs
during k-th hour is Si,, ¢ = {1,..., M}, k={1,...,24}. SC
volatility of host ¢ is defined as: ®; = ﬁ Obviously, if

the SC sets of the 24 hours are all differcktﬁé, we have &, = 1.
On the contrary, when the same set of SCs appears every hour,
we have ®; = 1/24. In general, the less volatile the set of SCs
is, the closer ®; is toward zero.

Training feature: The temporal feature for DGBA training
is represented by the average SC volatility of all the hosts
of the same type, expressed as: ﬁZfﬁ ®,. Fig. 5 shows
different temporal features for various P2P bots and legitimate
P2P hosts. We notice that Sality and Zeroaccess bots have
small volatility features, while emule hosts and Kelihos bots
have a moderate value of SC volatility. SC volatility is related
to a number of factors, such as the number of SCs, the size of
P2P networks and how dynamic the network connections are.
Detection feature: The temporal feature for DGBA detec-
tion captures the minimal SC volatility of all the hosts in the
cluster, i.e., min®;. Therefore, the temporal feature of bot-
included cluster will be determined by the bots, whose SC
sets appear less volatile. In the end, a low value of temporal
feature immediately reveal the presence of bots.

D. Training and Classification

Data Preprocessing: Data preprocessing tries to cope with
the issue that the collective features extracted from the network
flow data have different data ranges. To make sure every
feature in the feature sets is given equal importance, we
perform feature-wise normalization to shift and re-scale each
feature value so that they lie within the range of [0, 1].

Multi-class Classification: Support vector machine (SVM)
is adopted as our main classification method due to its robust-
ness, efficiency, and excellent non-linear classification perfor-
mance. In particular, we use multi-class SVM classification to
assign each cluster one label corresponding to a specific type

of botnet or a non-bot host. We denote the multiple labels as
{B1,Ba,..., By}, assuming k — 1 classes of botnets with the
last class representing non-bot label. The basic component of
the SVM method is a binary classification mechanism, which
classifies an unlabeled cluster based on the distance of its
feature to the decision hyperplane with norm vector w and
constant b:

fl@)=w'x+b=> g K(xi,x) +b, 1)
Vi

where x; is the feature vector of host ¢ from the training set,
y; € {—1,1} denotes the label of the training data, and the
parameters «; determines whether the host ¢ is a support vector
(a; > 0) or not (a; = 0). The feature vector x; is transformed
into a higher dimensional space by a non-linear kernel function
K(x;,X).

The two-class SVM determines w and b by searching for the
optimal hyperplane to separate the feature space into two parts.
This is also termed as a maximum margin approach, since
the objective is to maximize the distance between training
data and decision hyperplane. The multi-class SVM model
is built by combining multiple two-class SVM models. For
a K-class SVM model (K > 2), we use “one-versus-one”
approach [14], in which K (K — 1)/2 classifiers are trained
on all possible pairs of classes, and then a voting strategy is
used to classify the clusters to the corresponding classes with
the highest number of votes. The clusters labeled as specific
types of botnets become bot-included clusters, demanding a
further inspection.

E. Refined Bot Identification

After labeling bot-included clusters, the final step is to ex-
tract bots from the cluster based on their individual connection
features. Utilizing the experimental results of training features,
we devise a feature test to separate bots from benign hosts
who happen to be in the same cluster. The feature test (see
pseudo code in Algorithm 1) exploits the differences of various
connection features between bots and benign hosts. A number
of threshold values are defined to empirically set apart bots
and benign hosts (e.g. A7 = 8000, A2 = 0.2, A3 = 10,
A4 = 200, A5 = 0.2). As long as one type of features satisfies
the statement, the host is identified as bot.

Algorithm 1 Feature Test

1: for each bot-included cluster do
2 for each host in the cluster do
3: host <— benign host label
4 if number of connections > \; or
shared neighbor ratio with any peer > Ay or
number of significant connections < Az or > A4 or
significant connection volatility < s then
host < bot label
end if
end for
end for

FE. Evasion mechanisms and Limitations

PeerClean detects botnets without relying on deep packet
inspection, which already raises the bar for botnet authors. In

the following, we discuss the potential evasion mechanisms
that botnet authors might use to circumvent PeerClean.

The bots may disrupt the clustering mechanism by not
following the same transmission protocol. However, that will
increase the complexity of bot implementations and will also
affect the efficiency of C&C message exchange. Evading
DGBA is even harder to achieve. The possible attempts to
evade the DGBA detection include lowering the connection
number, lowering the shared neighbor ratio, raising the signif-
icant connection number, and raising the significant connection
volatility. The change of one or more connection features will
greatly affect the P2P network operation and may compromise
the stealthiness of individual bots. The collective features
enlarge the gaps between the bots and benign hosts. To make
the collective features indistinguishable from those of benign
hosts will require substantial work on designing a complex
botnet.

Since PeerClean identifies the bots based on the traffic flow
statistics from every host, it becomes a particular challenge
to identify a bot-infected host if it also runs legitimate P2P
applications simultaneously and persistently. In this case, the
bot traffic might be obscured by the traffic from P2P legitimate
applications. Since PeerClean performs detection per hour, the
smart bots would have to run P2P legitimate applications all
the time to prevent from being detected. We find this either
unlikely or costly for the bots to achieve. Most P2P nodes
have a fast peer churn rate with short communication sessions
[11]. Thus, it is unlikely for a P2P host, on its own course,
to run legitimate P2P applications with a P2P bot protocol
persistently, which would give away the bots at a certain point
of time. On the other hand, the future bots might intentionally
run the bot protocol together with legitimate P2P applications.
Nevertheless, this will affect the communication efficiency of
P2P bots, and might lead to a high peer churn rate or even a
complete disruption of C&C communications.

IV. EVALUATION

In this section, we evaluate the bot identification perfor-
mance of PeerClean. We first describe the collected data sets
(§8IV-A). Then, we show that PeerClean can well separate
different types of P2P bots into different clusters, but may
falsely include some benign P2P hosts who have bot-like
traffic patterns (§1V-B). After generating host clusters, DGBA
is carried out to extract group-level connection features from
each cluster. By separating the data set into training and testing
sets, a multi-class SVM model is trained using the labeled
training set. Finally, we evaluate the classification performance
and the refined bot identification performance in §IV-C and
§IV-D, respectively.

A. Data Collection

We use the traffic trace captured from the edge routers of
a large campus network, comprised of two /16 subnets. The
traffic rate is about 5000 flows per second, and was captured
for one whole day. We focus on the TCP and UDP traffic
in this traffic trace. However, as the network flow trace does
not include traffic payload, we do not have the ground truth
whether or not the active hosts are running legitimate P2P
applications.

To establish the ground truth data from legitimate P2P hosts,
we run three of the most popular P2P applications in our

Trace Size Dur | Pkts TCP/UDP clients Hour 2 |4 [6 |8 1012 |14 16]18]2 |22
Flows

Campus 20.7G 24h_ | 215G 401,661,350 34743 Cluster 20125 241 271 30) 29 | 321 25 | 29 | 30 | 28
Bittorrent 6.7G 240 | 854M 62,674,080 100 Num.
Skype TG ST 37eM 5 615840 100 Sality Clus- | 28 | 22 | 22 | 26 | 28 | 27 | 31| 22 | 22 | 29 | 26
Emule 1.6G 24h | 406M 18,078,800 100 ter Index 28

- ZeroAccess 20 25| 24| 27| 30| 29 32| 25 29 30 28
Sality 40M 24h 10.8M 565,490 6 Cluster
Kelihos 224M 24h | 235M 3,249,931 7 Index
ZeroAccess 4.6G 24h 166.9M 69,896,829 4 BSR, 1 1 1 1 1 1 1 1 1 1 1

BSR, T 1 |1 [1 |1 |1 T [1 I I I

P2P in cam-
pus

487TM ‘ 24h ‘ 608M ‘ 7,127,054 ‘ 783 ‘

TABLE III: Traffic summary (‘P2P in campus’ denotes the traffic
flows of the campus network after P2P host identification)

lab machines: Emule, BitTorrent, and Skype, and collect their
network flow traces. To make the traffic traces more represen-
tative, we interact with the P2P hosts using Autolt script [15]
to randomly select contents to be downloaded/uploaded (for
emule and bittorrent application), or randomly generate texts to
be transmitted (for skype application) at random time periods.
In total, we collected one-day traces from 100 Bittorrent
clients, 100 Skype clients and 100 Emule clients.

We also collected the network traces for three recent P2P
botnets: Sality, Kelihos and ZeroAccess. These network traces
were gathered by purposefully running Sality, Kelihos and
ZeroAccess samples in a controlled environment, in which we
carefully block spamming, scanning, and Denial of Service
attack activities. They contain 24-hour traces for 6 Sality bots,
4 Kelihos bots and 4 ZeroAccess bots. Since the major mali-
cious activities were blocked during the collection of network
traces, the collected traces mainly include C&C traffic, e.g.,
for peer discovery, command exchanging, etc. Note that these
traces are collected when the three botnets are fully active. The
traffic summary is listed in Table III. The traffic data from 300
legitimate P2P clients and 14 P2P bots constitute our ground
truth data set.

To make the evaluation more realistic, we used the traffic
flow traces collected from our campus network (a production
network) as the background traffic and added the traffic traces
collected from 300 legitimate P2P hosts and 12 P2P bots
into the campus traffic traces. In order to reduce the traffic
volume to be processed by PeerClean, we eliminate flows from
well-known and extremely busy servers such as DNS servers,
email servers, popular website servers (e.g. google, facebook,
youtube, etc.). After that, P2P host identification searches for
the hosts with a high percentage of failed connections (with
threshold of 5%). In total, we find 1097 hosts involved in
P2P applications during the day, including all the 314 P2P
hosts serving as ground truths and additional 783 hosts in the
campus network as shown in Table III. This result shows that
our P2P host identification mechanism is effective, as we do
not miss a single one from our ground truth host set.

B. Clustering P2P Hosts

In this section, we evaluate the P2P host clustering perfor-
mance of the PeerClean system. Based on the extracted flow
features in §III-A, we perform AP clustering to group together
P2P bots of the same type. During the flow feature extraction,
we find that almost all of the traffic flows from Kelihos bots
adhere to TCP protocol, while Sality and ZeroAccess bots
mostly generate UDP traffic. Hence, we use both the TCP
and UDP traffic patterns for host clustering.

The data set contains 24-hour flow traces from 1097 P2P
hosts, which is divided into 24 sections with one hour per

TABLE 1V: Clustering result using UDP traffic (BSR1, BSR»
denotes the BSRs of Sality and ZeroAccess bots respectively)

Hour 2 4 6 8 10 12 14 16 18 | 20 | 22

Cluster 21 24 25 15 22 25 26 21 24 20 18
Num.

Kelihos 13 24 | 23 14 19 6 5 20 | 6 14 17
Cluster
Index

BSR3 1 1 1 1 1 1 1 1 1 1 1

TABLE V: Clustering result using TCP traffic (BSR3 denotes the
BSR of Kelihos bots)

section. For each data section, we extract the flow statistical
features of every host who has 100+ outgoing TCP flows
and 1004 incoming TCP flows for the purpose of building
representative flow patterns. Then, host clustering is carried
out using the AP clustering method based on the extracted
flow statistical features. Note that, since the last two features
in Table II are refreshed at the end of the day, they will only
be used for clustering in the last hour.

We evaluate the clustering performance in terms of the abil-
ity of producing well separated and compact bot. We propose
two performance criterion. We define cross-clustered bots as
the bots falsely clustered together with other types of bots,
and correctly-clustered bots as the bots separately clustered.
The two performance criterion for evaluating the separation
and compactness performances of bot clustering are: (1) Bot
Separation Ratio (BSR), which is defined for each type of
bot as the ratio of the number of correctly-clustered bots over
the total number of bots of this type; (2) Bot Compactness
Ratio (BCR), which is defined as the ratio of the number
of correctly-clustered bots over the total number of hosts
(whether benign or not) assigned into the same cluster.

Bot Separation Performance: As observed from the per-
hour clustering results® in Table IV and V, Sality, Kelihos, and
ZeroAccess bots are assigned into different clusters with the
cluster index shown in the tables, i.e., all three types of bots
are well separated from each other, which raises their BSRs
to one. Moreover, almost all the bots of one type are grouped
into the same cluster, with an exception of Sality bots who are
divided into two clusters at the 12-th hour. Nevertheless, none
of these clusters contains more than one type of bots, which
demonstrates the perfect separation of different types of bots.
Bot Compactness Performance: The perfect bot separa-
tion performance indicates that each bot-included cluster only
includes one type of bots, although it may also include
some benigh P2P hosts, which happen to have a similar
traffic pattern during the detection period. BCR quantifies
the clustering capability to preclude the inclusion of the
benign P2P hosts in the bot-included clusters. If a bot-included
cluster contains zero benign hosts, its BCR value would be 1.
Accumulating the 24-hour BCR results, we plot BCR box-
plot performance of three types of bots in Fig. 6. On average,

3Note that we only count the clusters containing more than one node.

)
o

4
%

=)
S

o
=Y

Bot Compactness Ratio
o o o
o & O

o
i

o
o

Sality Kelihos Zeroaccess

Fig. 6: Box plot of Bot Compactness Ratio

Sality and ZeroAccess bot clusters falsely include 3 benign
hosts respectively, while Kelihos bot clusters falsely include 12
benign hosts. Further inspection of the falsely included benign
hosts shows that they have traffic profiles that are highly
similar to the bots’ traffic. This experimental result shows
that the proposed clustering mechanism based on network
flow features are subject to false positives. In other words, the
network flow features alone are not sufficient to discriminate
accurately P2P bots from benign P2P hosts.

C. Identifying Bot-included Clusters via Classification

In this section, we evaluate the bot cluster identification
method. Since we only have a limited number of labeled
bots during every hour, we enlarge the training space by
incorporating a half day of labeled bots and benign hosts
into the training set. Consequently, the training set contains
36 clusters (3 clusters per hour) of labeled bots (with labels
‘Sality’, ‘Kelihos’, ‘ZeroAccess’) and 36 clusters of labeled
legitimate P2P hosts running Bittorrent, Emule and Skype
(with labels ‘Non-Bot”). We extract the training features from
all the 72 labeled clusters to build the SVM classifier. Then,
we use the next half day of bots and benign hosts as testing
set, which includes a total of 37 bot-included clusters and 545
benign clusters.

After host clustering, the DGBA detection process extracts
four different types of group-level connection features from
every cluster in the testing set. Then, the SVM model predicts
the labels of clusters. Since the classification module relies on
four different types of features, we train the classifier on each
individual group behavior feature in order to understand their
relative importance.

Table VI shows the classification performance using differ-
ent types of features for training. The classification based on
either shared neighbor feature or significant connection feature
have high accuracy and recall, but only achieve moderate
precision. Looking into the classification results, we find that
the classification produces few false negatives but many false
positives, i.e., bot-included clusters are unlikely to be regarded
as benign cluster with these two features, but many benign
clusters are falsely considered as bot-included clusters. On
the other hand, cluster connectivity feature seems unable to
discriminate bots from benign hosts, as it brings substan-
tial false positives and false negatives. We observe that the
correctly classified bots mainly belong to ZeroAccess botnet,
which is consistent with our analysis in Section III-C1. Finally,
temporal feature is designed to be updated at the end of the
day, thus is only used for bot classification in the final hour.
Again, many false positives arise due to the inseparability
of bots’ features and benign hosts’ features. However, the

Group Behavior || Accuracy Precision Recall
Feature
Cluster Connectiv- || 51.8% 7.9% 34.3%
ity Feature
Shared Neighbor || 92.7% 68.8% 91.7%
Feature
Significant 91.8% 66.7% 90%
Connection Feature
Temporal Feature 71.3% 3.1% 66.7%

[All Features [[98.8% [94.6% [100%]

TABLE VI: Classification accuracy when trained on one type of
feature. Shared neighbor feature and significant connection fea-
ture present the best classification accuracy. The classifier achieves
the best performance when combining all the features. Accu-
racy=(TP+TN)/all; Precision=TP/(TP+FP); Recall=TP/(TP+FN).
1 <3 L
0.95
0.9
0.85
0.8
0.75

0.7
0.1 0.2 0.3 0.4 0.5 0.6

Percentage of labeled data

-®-Accuracy =¥ Precision Recall
Fig. 7: Classification performance with different percentages of

training data

combination of all features provide the best result for detecting
bot-included clusters. Overall, we only have two false positives
and zero false negatives.

It is worth noting that the training set constitutes 50%
of the whole data set in the previous evaluation. Here, we
also evaluate the classification performance by varying the
percentage of training data, since it is always difficult to collect
traffic traces from labeled bots. As shown in Fig. 7, PeerClean
can still retain more than 70% classification accuracy when the
training sets contain traces from merely 10% of labeled hosts.
This suggests that PeerClean is robust against small sets of
training data, and may have wide applicability under different
network sizes.

D. Refined Bot Identification Performance

Bot-included clusters contain a considerable amount of
benign hosts as shown in Section IV-B, thus we use refined
bot identification to extract the bots inside each bot-included
cluster. The feature test in Algorithm 1 is utilized to perform
refined bot identification. We run the feature test on all the
39 bot-included clusters identified through SVM classification,
including 13 Sality clusters, 12 Kelihos clusters, 12 ZeroAc-
cess clusters and 2 false positives. The bot identification
performance is reported in Table VII, which shows the bot
number and benign host number in the bot-included clusters.
In summary, the refined bot identification method correctly
identifies more than 95.8% of bots, and falsely triggers less
than 4.8% alarms.

V. RELATED WORK

The increasing popularity of P2P botnets has led to a
vast amount of research that attempt to track and remove
them. In the literature, the detection mechanisms can be
classified into two categories: host-based approaches and
network-based approaches. The latter can be subdivided into

Bot Type Bot Benign | Correctly Falsely
Num. | Host Identified Identified
Num.
Sality 72 36 69(95.8%) 0 (0%)
Kelihos 48 123 47(97.9%) 5 (4.1%)
ZeroAccess|| 48 42 48(100%) 2 (4.8%)

TABLE VII: Refined bot identification performance (the percentage
in the parenthesis denotes the bot detection rate and false alarm rate
respectively)

network traffic-based approaches and communication graph-
based approaches. We now review some additional works from
the second category that are most related to our work.
Network traffic-based approaches: Some related works
utilize attack traffic characteristics to identify hosts with
similar abnormal network behaviors, such as spamming, port
scanning, sharing the same packet contents [16], or, having
common destinations, similar payloads and common host
platforms [17]. However, these approaches can be evaded by
manipulating attacking strategies.

Several works focused on identifying C&C traffic from the

botnets. Bilge et al. [9] proposed to use NetFlow analysis
to distinguish botnet C&C servers from benign servers by
extracting flow-level features from the data. Wurzinger et
al. [18] identify C&C by automatically extracting signatures
from bot responses after receiving commands. However, this
approach can be circumvented by traffic encryption. Moreover,
the above approaches, which use only flow-level statistics,
are not robust enough to produce accurate detection results.
Instead, PeerClean greatly enhances the detection capability by
jointly considering the flow-level traffic statistics and group-
level network connection behaviors.
Communication graph-based approaches: In [19],
Coskun et al. proposed to identify the local members of
P2P bots using mutual contacts graph. However, this method
requires to start with a captured seed bot in the network,
which may not be available. Jelasity et al. [20] argued that
it is difficult to detect P2P bots using traffic dispersion graph
(TDG) especially with a limited view of the Internet traffic at a
single AS. Most recently, Li et al. [21] proposed to detect P2P
community by identifying the densely connected subgraphs.
However, this approach only focused on a backbone network
which requires a very large communication graph. Also, solely
relying on the connection patterns, it may falsely include lots
of benign hosts in the discovered P2P botnets.

VI. CONCLUSION

P2P C&C infrastructure has become a popular choice for
the future botnets, which is extremely resilient to even so-
phisticated takedown measures. The ability to identify botnets
inside a network is particularly important to the network
administrators. Toward this direction, we present PeerClean,
a new network flow-based system to identify and classify
botnets with a high accuracy. The main novelty in the design
of PeerClean is the use of group-level behavior analysis and
the novel strategy of using the average behavior as the training
feature but the extreme behavior as the detection feature. Our
extensive experimental results show that the group-level con-
nection features are more robust. Together with the proposed
SVM training and detection processes, PeerClean is shown to
be very effective in detecting several known botnets. Based

on the underlying rationales behind these proposed group-
level features to capture the characteristics of bots, we believe
PeerClean is also able to detect unseen and adaptive botnets,
as the group-level features effectively help to distinguish the
bots’ characteristics from benign P2P hosts’ characteristics.
An interesting future direction is to apply the group behavior
analysis to other types of applications to help identify the
network behaviors which would be otherwise unnoticeable.
PeerClean could also be tuned to perform anomaly detection
to identify unseen bots and the performance of which is yet
to be understood.

REFERENCES

[1] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “Botgrep:
Finding p2p bots with structured graph analysis,” in Proc. of USENIX
Security’10, 2010.

[2] T.-F. Yen and M. K. Reiter, “Are your hosts trading or plotting? telling
p2p file-sharing and bots apart,” in Proc. of ICDCS, June 2010.

[3] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting
stealthy p2p botnets using statistical traffic fingerprints,” in Dependable
Systems Networks (DSN), 2011 IEEE/IFIP 41st International Conference
on, June 2011.

[4] Z. Xu, L. Chen, G. Gu, and C. Kruegel, “Peerpress: Utilizing enemies’
p2p strength against them,” in Proc. of ACM CCS’12, October 2012.

[5] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host,” in
Proc. of USENIX Security’09, August 2009.

[6] G. Gu, P. Porras, V. Yegneswaran, and M. Fong, “Bothunter: Detecting
malware infection through IDS-driven dialog correlation,” in Proc. of
USENIX Security’07, August 2007.

[71 G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
analysis of network traffic for protocol- and structure-independent botnet
detection,” in Proc. of USENIX Security’08, 2008.

[8] J. Zhang, X. Luo, R. Perdisci, G. Gu, W. Lee, and N. Feamster,
“Boosting the scalability of botnet detection using adaptive traffic
sampling,” in Proc. of AsiaCCS, March 2011.

[9]1 L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,

“DISCLOSURE: Detecting botnet command and control servers through

large-scale netflow analysis,” in Proc. of ACSAC, Dec. 2012.

T.-F. Yen and M. K. Reiter, “Revisiting botnet models and their implica-

tions for takedown strategies,” in Proceedings of the First international

conference on Principles of Security and Trust, 2012.

D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer

networks,” in Proceedings of the 6th ACM SIGCOMM conference on

Internet measurement, October 2006.

B. J. Frey and D. Dueck, “Clustering by passing messages between data

points,” Science, vol. 315, no. 5814, pp. 972-976, 2007.

K. Xu, Z.-L. Zhang, and S. Bhattacharyya, “Profiling internet backbone

traffic: Behavior models and applications,” in Proc. of SIGCOMM,

August 2005.

C. M. Bishop, Pattern Recognition and Machine Learning.

2006.

“Autoit script,” http://www.autoitscript.com/site/autoit/.

G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command

and control channels in network traffic,” 2008.

T.-F. Yen and M. K. Reiter, “Traffic aggregation for malware detection,”

in Proc. of DIMVA 08, 2008.

P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda,

“Automatically generating models for botnet detection,” in Proc. of

ESORICS’09, 2009, pp. 232-249.

B. Coskun, S. Dietrich, and N. Memon, “Friends of an enemy: Identi-

fying local membersof peer-to-peer botnets using mutual contacts,” in

Proc. of ACSAC, 2010.

M. Jelasity and V. Bilicki, “Towards automated detection of peer-to-peer

botnets: on the limits of local approaches,” in Proc. of LEET 09, 2009.

L. Li, S. Mathur, and B. Coskun, “Gangs of the internet: Towards

automatic discovery of peer-to-peer communities in the internet,” in

Proc. of CNS, 2013, pp. 167-175.

[10]

(11]

[12]

[13]

[14] Springer,

[15]
[16]

[17]

(18]

[19]

[20]

(21]

