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Abstract
Audio adversarial examples, imperceptible to hu-
mans, have been constructed to attack automatic
speech recognition (ASR) systems. However, the
adversarial examples generated by existing ap-
proaches usually incorporate noticeable noises, es-
pecially during the periods of silences and pauses.
Moreover, the added noises often break temporal
dependency property of the original audio, which
can be easily detected by state-of-the-art defense
mechanisms. In this paper, we propose a new It-
erative Proportional Clipping (IPC) algorithm that
preserves temporal dependency in audios for gen-
erating more robust adversarial examples. We are
motivated by an observation that the temporal de-
pendency in audios imposes a significant effect on
human perception. Following our observation, we
leverage a proportional clipping strategy to reduce
noise during the low-intensity periods. Experimen-
tal results and user study both suggest that the gen-
erated adversarial examples can significantly re-
duce human-perceptible noises and resist the de-
fenses based on the temporal structure.

1 Introduction
Due to the recent advancement in artificial intelligence (AI)
and machine learning, automatic speech recognition (ASR)
systems have been integrated into numerous commercial
products. Recently, researchers [Vaidya et al., 2015; Carlini
et al., 2016] demonstrated the possibility of creating adversar-
ial examples to launch targeted attacks towards ASR systems.
The goal of the attack is to force ASR systems to recognize
the audio inputs as intelligible voice commands, while hu-
man perceives the audio inputs differently. Such attacks have
proven to be effective towards ASR systems that use Gaussian
Mixture Model (GMM) and Hidden Markov Model (HMM),
while recently, ASR systems leveraging deep neural networks
are also targeted by sophisticated adversarial examples gen-
erated by a slight perturbation of the original inputs [Cisse et
al., 2017; Kreuk et al., 2018; Gong and Poellabauer, 2017;
Yuan et al., 2018].

∗Corresponding Author

Although remarkably effective, the generation of audio ad-
versarial examples face two major challenges: 1) the incor-
poration of non-negligible perturbation during the periods of
silences and pauses in adversarial audios; and 2) the lack of
robustness in resisting data property based defenses. Silences
or pauses are a part of human conversations. However, the ad-
versarial examples generated by existing optimization-based
approaches [Carlini and Wagner, 2018], which apply noises
over the entire audio, incorporate a non-negligible perturba-
tion in the period of silences and pauses and could alert the
users on their existence. Moreover, existing approaches dis-
regard the inherent voice data property when generating ad-
versarial examples, which allows defense mechanisms [Yang
et al., 2018] that exploit voice data properties to spot such at-
tacks. One crucial voice data property that has been used in
defense mechanisms is temporal dependency (TD).

This research is motivated by an observation that TD in au-
dios imposes a significant effect on human perception of au-
dios. We perform a user study to investigate how TD affects
our auditory perception of audio samples which even have an
equivalent level of noise in decibels. We discover that the
perturbed audio with a better preservation of TD presents a
higher audio quality by human perception. And this obser-
vation motivates us to preserve temporal dependency while
generating audio adversarial examples.

In this paper, we propose a new Iterative Proportional Clip-
ping (IPC) algorithm that generates robust adversarial exam-
ples with TD. To the best of our knowledge, we are the first to
consider TD in designing targeted attacks towards ASR sys-
tems. Specifically, we first extract Mel Frequency Cepstral
Coefficient (MFCC) features of the input audio and propa-
gate them through the ASR model to compute the objective
loss. Then we perform backpropagation to retrieve the gradi-
ent, which will be used as the raw perturbation. We add the
raw perturbation on the original input, and perform a data-
driven proportional clipping operation on the updated signal
based on the signal intensities of the original audio. After
a series of iterations, the adversarial examples are generated.
We demonstrate that our method is successful in attacking the
state-of-the-art CNN based ASR system Wav2letter+. No-
tably, the proposed approach generates adversarial examples
in the order of minutes instead of hours as seen in prior ap-
proaches [Carlini and Wagner, 2018]. Compared to one re-
cent approach [Schönherr et al., 2018] that leverages sound



masking which requires the computation of the complex hear-
ing threshold matrix, our approach is more generic and easier
to implement in practice. The impact of the proposed attack
lies in the generation of human-imperceptible adversarial ex-
amples to attack ASR systems without alerting the users.

Our contributions are summarized as follows:

• We propose a new Iterative Proportional Clipping (IPC)
algorithm to generate robust audio adversarial exam-
ples with temporal dependency to attack ASR systems
without alerting the users. We further propose two en-
hancements to the attacks by hiding noises in the high-
intensity or high-frequency components to improve the
imperceptiblity of adversarial examples.

• We implement a successful attack on the latest model
of an end-to-end CNN based ASR system Wav2letter+
with a differentiable Mel Frequency Cepstral Coefficient
(MFCC) features extraction.

• Experimental results show that the adversarial examples
are effective even under temporal dependency based de-
fense (TD defense). User study shows that our adversar-
ial examples have the highest audio quality so far.

2 Related Work
2.1 Adversarial Examples
In their seminal work, [Biggio et al., 2013] and [Goodfellow
et al., 2014] have shown that neural networks are vulnerable
to adversarial examples. Compared with the image field, less
efforts have been spent on studying the impact of audio ad-
versarial examples towards neural networks based ASR sys-
tems. One type of attack approaches creates a waveform that
ASR systems recognize as intelligible voice commands but
humans perceive as noise. [Vaidya et al., 2015] first explored
adversarial examples against ASR systems, by integrating an
audio command into an audio mangler while keeping most of
MFCCs intact. This method leads to perceptible sound dis-
tortion due to the lossy inversion. [Carlini et al., 2016] con-
structed white-box attacks via the hidden voice commands
on CMU Sphinx speech recognition system, in which they
demonstrated HMM-only ASR systems were subject to such
targeted attacks. [Zhang et al., 2017], [Yan et al., 2020]
proposed DolphinAttacks and SurfingAttack and showed the
possibility to hide transcriptions by modulating the baseband
audio signal with ultrasound higher than 20 kHz. However,
all these methods above cannot generate the adversarial audio
waveforms for an end-to-end ASR framework.

Another type of approaches is to deceive the neural net-
works by introducing minor perturbations on the input. [Car-
lini and Wagner, 2018] used CTC loss as an objective func-
tion and generated adversarial examples using a gradient-
descent-based minimization scheme [Carlini and Wagner,
2017]. However, the generated adversarial examples tend to
include widely distributed noises, which become noticeable
by humans. One recent approach considers psychoacous-
tics to minimize human perception: [Schönherr et al., 2018]
proposed psychoacoustic hiding, which utilizes the hearing
thresholds for designing proper perturbations of the input sig-
nals by curbing the signal variation below the threshold of
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Figure 1: The creation of adversarial examples can be divided into
three processes: (1) a backpropagation process to obtain a raw per-
turbation; (2) a signal update process based on the raw perturbation;
(3) a proportional clipping process on the updated signal to constrain
the signal within two boundary lines in (b). In the last component,
we first calculate two boundary lines from the original waveform
in (a). Then, we clip the disturbed waveform in (c) at those posi-
tions where the sound intensity goes beyond the area enclosed by
the two boundary lines, as shown in (d). The modified waveform is
displayed in (e).

human perception. [Abdullah et al., 2019] utilized domain-
specific knowledge of audio signal processing to achieve
practical black-box attacks by leveraging the fact that hu-
mans interpret discontinuous signals as noisy and hardly dis-
cern differences in high-frequency signals. These techniques
require domain-specific knowledge and complex signal pro-
cessing, which are difficult to implement.

2.2 Perceptual Assessment
Research efforts have been spent in developing computational
methods for the perceptual assessment of transmission quality
of lossy wide-band audio compression techniques as an alter-
native to costly listening tests [Huber and Kollmeier, 2006].
However, the mechanism of human auditory perception has
not been fully explored and simulated, and there is no ob-
jective measurement that can completely replace subjective
evaluation [Assembly, 1994; Recommendation, 2001]. Pre-
vious approaches for attacking ASRs all use noise measured
in decibels for quantifying the human perceptibility. In this
paper, we demonstrate that other factors could also affect hu-
man hearing of audio examples even with the same level of
noises. Therefore, there is still room to substantially improve
the auditory quality of the adversarial examples.

3 The Effect of Temporal Dependency
In this section, we aim to address the question: “Does tempo-
ral dependency in audio affect human perception of the audio
quality?” Understanding the relationship between the two is
pivotal for designing better adversarial examples.

3.1 Generating Testing Audio Samples
To compare audio samples with different degrees of tempo-
ral dependency, we construct two sets of audio samples by
adding two types of noises on the original audio x ∈ Rn.
The noises ∆x and ∆x′ are generated as follows:

∆x = γ · x̄ · r, ∆x′ = γ · (x� r), (1)

where r ∈ Rn is a random vector from a uniform distribu-
tion in [0, 1], x̄ represents the average value of x, � repre-
sents element-wise product, and γ is a parameter to control



a1 a2 a3 â1 â2 â3
x + ∆x 0.9889 0.9872 0.9888 0.9249 0.9621 0.9622
x + ∆x′ 0.9992 0.9980 0.9992 0.9917 0.9964 0.9965

Table 1: Cross-correlation coefficient between the original audio
(a1, a2, a3) and the perturbed audio samples.

γ/x̄ Percentage of users choosing the second set
0.15 98.0%
0.2 100.0%
0.25 96.0%

Table 2: Results of the user study.

the degree of perturbation. For each set, we construct three
sequences of audio samples with different degrees of pertur-
bation, with each sequence containing 20 audio samples. In
total, we have 60 pairs of audio samples for testing. In addi-
tion, we set the maximum intensity of noises in both sets as
the same decibel value.

Since the added noise in the second set of samples is pro-
portional to the original audio x as presented in Eq. (1), it re-
sembles the original audio in terms of temporal dependency
property. We use the cross-correlation coefficient to measure
temporal dependency in these generated samples [Olden and
Neff, 2001]. Table 1 presents the cross-correlation coeffi-
cient of three randomly chosen original audio samples, de-
noted as a1, a2 and a3 and their respective perturbed samples.
The result shows that the perturbed samples in the second set
has a higher cross-correlation coefficient with the original au-
dio. Moreover, we extract the low-intensity components from
the original audio, denoted as â1, â2 and â3, and the result
shows the second set has a better preservation of temporal de-
pendency in original audios, especially in their low-intensity
components.

3.2 User Study
We generate 60 pairs of audio samples with samples from
test-clean set of LibriSpeech dataset, which is introduced in
Section 5, and perform a user study with 20 volunteers in-
cluding seven postgraduates and thirteen undergraduates. We
present each volunteer with the original audio and two per-
turbed samples from the first set and the second set. We then
ask the volunteer to compare which of the two samples is
closer to the original audio. For every volunteer, we execute
the test with at least four different pairs of samples. The re-
sults in Table 2 show that most of the volunteers consider the
audio samples in the second set are closer to the original audio
with less perceptible noise, even with different degrees of per-
turbations. As a result, there does exist a positive correlation
between the temporal dependency and human perception of
the audio. The results imply that high temporal dependency
in perturbed audio samples improve the audio quality.

4 Robust Audio Adversarial Example
Generation

Motivated by the observation in Section 3, we propose an It-
erative Proportional Clipping (IPC) algorithm to generate ad-

versarial examples, and show how the audible noise can be
reduced by preserving temporal dependency during the cre-
ation of adversarial examples. We further propose two en-
hancements similar to [Yakura and Sakuma, 2018] to further
improve the imperceptibility of adversarial examples.

4.1 Iterative Proportional Clipping Algorithm
We formulate the problem of constructing an adversarial ex-
ample as an optimization problem. Given a trained ASR
model f : Rn → Ru×v and a decoder d : Ru×v → Rw,
we modify x with the minimal distortion so that the decoder
recognizes the sample as a target sentence t rather than the
original decoding result y ∈ Rw. The main challenge lies
in the following dilemma: a larger distortion achieves better
performance in altering the original phrase toward the target
phrase, but it also leads to lower audio quality. To address
this challenge, we propose an objective loss function ` for
generating an audio adversarial example as follows:

minimize λ1 · Loss(f(φ(x+ δ)), t) + λ2‖δ‖22,

s.t. | δi
xi
| < B, i ∈ [n],

(2)

where [n] denotes {1, 2, ..., n}, and the φ(·) denotes a feature
extractor which extracts MFCC features, log-mel filterbank
energies features, or power spectrum features. The Connec-
tionist Temporal Classification (CTC) loss is used in the first
item in Eq. (2) to achieve adversarial attack and L2 distortion
is used in the second item for reducing noise. The param-
eters λ1, λ2 are used to control the relative importance of
being adversarial and remaining similar to the original audio.
And B ∈ [0, 1] is the intensity width of the perturbation. The
goal of adversarial example generation is to minimize the loss
function subject to the perturbation constraint.

The intensity width B in Eq. (2) is used to maintain the
proportionality between the perturbation δ and the original
waveform x. Because the intensity width makes the clip-
ping thresholds of each position in the perturbed audio pro-
portional to the original waveform, the clipped waveform has
a higher similarity in terms of shape1 with the original one,
which better preserves the temporal dependency. Related ex-
perimental validation is presented in Section 5. Note that the
proposed objective loss function does not need to be iterated
many times as in previous approaches [Carlini and Wagner,
2018]. The novel constraint condition guarantees to reach a
proper solution quickly.

As shown in Figure 1, our algorithm can be integrated into
the CNN-based speech recognition process: during each it-
eration, we first apply backpropagation to get the raw pertur-
bation to be added to the input, and then perform an propor-
tional clipping operation on the modified input. We can see
that the waveform in red in (e) after proportional clipping has
a more similar trend with the original waveform. The pseu-
docode of the proposed algorithm is presented in Algorithm
1. In essence, IPC limits the perturbation within a certain
range determined by the intensity width B in Eq. (2). The

1The shape of an audio waveform stands for the trend in audio
time-series data, which is one of the three aspects of temporal de-
pendency property: temporal closeness, period and trend.



Algorithm 1 IPC Attack
Input: Original sample x ∈ Rn, target sentence t, trained
ASR model f , decoder d, B
Output: Adversarial examplexadv

1: Initialize S ← False, x̂← x, δ ← 0,
2: while S = False do
3: calculate the loss `,
4: calculate the gradient∇`x ∈ Rn on the input x,
5: δ ← ∇`x,
6: for i ∈ [n] do
7: clip δi within [−xi ·B, xi ·B] as δ′i,
8: end for
9: x← δ′ + x̂,

10: if d(x) = t then
11: S ← True,
12: xadv ← x,
13: end if
14: end while
15: return xadv .

tolerable perturbation of the original audio will increase with
a larger B value. When B is more than 1, IPC degenerates
into Opt [Carlini and Wagner, 2018] .

4.2 Adversarial Examples with Noise Hidden in
High-intensity Voice Components

The perturbation during silent and low-intensity periods such
as the beginning and the end of a speech seriously degrades
the quality of the speech. IPC decreases but does not com-
pletely remove such perturbation, which could alert the users
once the perturbation exceeds a certain hearing threshold.

Therefore, we propose to hide commands into certain high-
intensity voice segment based on IPC. This could avoid per-
ceptual noise in the low-intensity periods. For a benign audio
x that has high intensity in the first k timestamps and low
intensity in the remaining timestamps. In essence, we only
apply the perturbation on the high-intensity components (i.e.,
the first k timestamps) to minimize the objective loss func-
tion. Our attack can be formalized as follows:

δ∗ = argmin
δ

λ1 · Loss(f(φ(x[k] + δ), t) + λ2‖δ‖22,

s.t. | δi
xi
| < B, i ∈ [k],

(3)

where δ∗ ∈ Rk represents the perturbation of the audio seg-
ment x[k].

xadv = [x[k] + δ∗ x[n]\[k]], (4)
where x[n]\[k] denotes the components from (k+1)-th times-
tamp to n-th timestamp, [] represents the concatenation of
the high-intensity and low-intensity segments. After concate-
nating the adversarial segment with the remaining ones, we
derive the complete audio adversarial example xadv .

4.3 Adversarial Examples with Noise Hidden in
High-frequency Voice Components

Humans have different perception capability to acoustic sig-
nals of different frequency bands [Fayek, 2016]. The noises

within low frequency band is more likely to be better per-
ceived by humans, allowing them to discover the existence
of adversarial attacks. Moreover, the noises within low
frequency band such as human voice frequency band from
300Hz to 3,400Hz also seriously influences the audio quality.

Therefore, we propose to perturb the audio input only in
certain high frequency band. During each iteration, we only
backpropagate the perturbation from certain frequency band
to update the input and freeze the gradient from the other
frequency bands. This is similar to the band-pass filter in
[Yakura and Sakuma, 2018]. Based on empirical observa-
tions, we set the band to 3,500Hz to 8,000Hz, which results
in less perceptual noise. And the adversarial example gener-
ation can be formalized as follows:

minimize λ1 · Loss(f(φ(x+ δ)), t) + λ2‖δ‖22,

s.t. | δi
xi
| < B, i ∈ [n], where δ =

∂`

∂X[q]\[p]

∂X[q]\[p]

∂x
.

(5)
Here, X denotes the output of the Fourier transform of the
modified input in the previous iteration, and ` denotes the ob-
jective loss in Eq. (5). p and q represent the lower and up-
per frequency bounds of the considered frequency band, and
the subscript range [q] \ [p] along the frequency domain of
X , is used to explicitly limit the frequency range of the per-
turbed signals to be between p and q. By considering both the
temporal dependency and frequency components, we gener-
ate high-quality adversarial examples.

5 Experiments
5.1 Dataset and Adversarial Model
Dataset. LibriSpeech [Panayotov et al., 2015] is a corpus
of approximately 1,000 hours of 16 KHz English speech de-
rived from audiobooks from the LibriVox project. It comes
with its own training, validation sets, test-clean and test-other
sets. We use all available samples to train and validate our
ASR system. We generate adversarial examples only using
its test-clean set, which contains 2,620 waves with the aver-
age duration of 4.294s.
Adversarial model. Wav2letter [Collobert et al., 2016] is
an efficient end-to-end ASR system released by the Facebook
AI research team. Based on the architectures in [Collobert et
al., 2016] and [Liptchinsky et al., 2017], NVIDIA proposes
Wav2letter+ which consists of 17 1D-Convolutional Layers
and 2 Fully Connected Layers and uses CTC loss for train-
ing. During the training, it extracts log-mel filterbank ener-
gies as the input features to the model and outputs a pseudo-
posteriors matrix, with each element representing the possi-
bility of each alphabet label at each step. During the speech
recognition, it decodes with beam search decoder and outputs
a sequence of letters corresponding to the speech input.

5.2 Implementation Detail
In this research, we implement Wav2letter+ in Pytorch as our
adversarial model. Different from the Wav2letter+ specifi-
cation, we use a differentiate MFCC features extraction pre-
ceding the ASR model. We use “torch.rfft” to convert signal
to the frequency domain. All experiments are carried out on
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Figure 2: This figure displays the STFT of an audio sample, and Opt’s perturbation, our perturbation, two types of perturbations on the
audio sample when embedding noise in the high-intensity components and high-frequency components. The lighter colors indicates a higher
intensity at a given frequency and time. Our adversarial perturbation has lower intensities in low-intensity segments than Opt.

Type Transcribed results
Orig but then the picture was gone as quickly as it came
half but then the picture was

Adv open alipay
half open
Adv transfer to bob ten dollars
half transfer to bob
Adv please delete the last transaction record
half please delete the last

Table 3: Maliciously translated examples (‘Adv’) in different lengths
from a general audio waveform(‘Orig’). ‘half’ denotes the result of
TD defense by setting cut ratio as 0.5.

an Ubuntu Server (16.04 LTS) with an Intel Core i5-6500@
3.20GHz × 4, 16G Memory and GTX 1080 GPU.

For the input sample, we randomly select one audio sam-
ple from the test-clean set as the original audio. For the target
sentence, we select the sentence corresponding to another au-
dio sample or one random sentence as the target. We use a
“Coarse-to-fine” strategy to reduce the time consumption of
beam search decoder by splitting the generation process into
two stages. In the first stage, we use a greedy decoder and
generate a weak adversarial example under the train mode of
the ASR system, which is an approximation of the true adver-
sarial example; and then, in the second stage, we turn to beam
search decoder and fine tune it to get the desired adversarial
example under the eval mode of the ASR system. In our ex-
periments, we set the learning rate as 1e−5 in the first stage
and 5e−5 in the second stage.

5.3 Results
Table 3 shows the maliciously translated examples in differ-
ent lengths from a general audio waveform. To investigate the
impact of intensity width B in Eq. (2), we generate adversar-
ial examples with different intensity widths and explore the
trend of two key metrics in Figure 3(a): L2 distortion and
Epoch. L2 distortion is chosen for quantifying the distortion
introduced by the perturbation and the number of epochs im-
plies the requisite time for generating an adversarial example.
We can see that L2 distortion descends slowly while the num-
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Figure 3: (a) L2 Distortion and epoch with different intensity widths.
(b) Word Error Rate and Character Error Rate of audio examples.

ber of requisite epochs grows as theB narrows down from 0.5
to 0.1. To strike a balance between epochs and distortion, we
set the widthB to 0.2 in all the following experiments to gen-
erate adversarial examples with a high quality while reducing
runtime cost.

5.4 Comparison with Previous Work
First, our proposed algorithm makes adversarial audio sam-
ples resemble the original audio, which are difficult to dis-
cover by human hearing due to psychoacoustic principles.
Figure 2 displays the Short-time Fourier Transform (STFT)
of original audio sample, both Opt’s and our perturbation on
the original audio sample in the left three figures. We can see
that the perturbation produced by Opt has greater intensities
in the low-intensity and silent periods. In contrast, our per-
turbation has smaller intensities across the spectrogram espe-
cially in low-intensity periods, which makes our adversarial
audio perceptually more appealing than Opt based adversarial
audio.

We also show the STFT of the perturbation of our enhanced
attacks in the right two plots in Figure 2. It can be seen
that all perturbation exists in the high-intensity speech pe-
riods for the first enhanced attack, which greatly decreases
widely distributed noises. For second enhanced attack, most
perturbations are limited in the high frequency bands, while
there is almost no perturbation during low frequency bands
within 0Hz-3,500Hz, the most important frequency band for
humans to interpret voice commands.

In addition, the proposed approach consumes less time
costs to accomplish an attack. As the classical paper [Car-



Hear target
sentence

Hear anything
abnormal

Hear nothing
abnormal

Opt b1 0.0% 40.0% 60.0%
b2 0.0% 55.0% 45.0%

IPC b1 0.0% 30.0% 70.0%
b2 0.0% 35.0% 65.0%

Enh1 b1 0.0% 25.0% 75.0%
b2 0.0% 10.0% 90.0%

Enh2 b1 0.0% 15.0% 85.0%
b2 0.0% 25.0% 75.0%

Table 4: Results of the user study of adversarial examples generated
from Opt, IPC and two enhanced attacks, denoted as Enh1 and Enh2
(b1 and b2 are two different original samples).

c1 c2 c3
Opt 0.9160 0.9255 0.9170
IPC 0.9900 0.9970 0.9985
High-intensity 0.9941 0.9973 0.9990
High-frequency 0.9987 0.9980 0.9989

Table 5: Cross-correlation coefficient between original audio (c1,
c2, c3) and adversarial examples based on different methods.

lini and Wagner, 2018] has demonstrated, generating a sin-
gle adversarial example requires approximately one hour of
computation time on commodity hardware (a single NVIDIA
1080Ti). [Schönherr et al., 2018] requires less than two min-
utes to calculate the adversarial perturbations with 500 back-
propagation steps but do not specify the exact time for a suc-
cessful attack. In contrast, to accomplish a successful attack,
our time consumption is in the minute-level, usually in 3-15
minutes on commodity hardware (a single NVIDIA 1080),
without any complex computations.

5.5 User Study and Analysis
In order to confirm if humans could notice an attack, we con-
duct a user study. We let 20 volunteers to listen to six ad-
versarial audio samples in three sets which correspond to IPC
attack and two enhanced attacks respectively, with each set
containing two adversarial examples. The results are shown
in Table 4. Although a small number of volunteers felt the ab-
normality, most of them heard nothing abnormal, and all the
participants could not hear the target sentences. We also show
the result of Opt based adversarial examples for comparison.

To determine the amount of perceptible noise, we also cal-
culate the cross-correlation coefficient between original au-
dio samples and adversarial examples as our measure of the
perceptibility of noise, which quantifies the temporal depen-
dency property. The comparison of IPC with Opt and two en-
hanced attacks are shown in Table 5. The best solution tends
to appear in two enhanced attacks. We also list the cross-
correlation coefficient with different intensity widths on these
three audio samples in Table 6 to investigate the effect of in-
tensity width. It clearly demonstrates IPC results in better
perception by leveraging a stricter intensity width.

5.6 Performance Against TD Defense
To validate the robustness of our adversarial examples, we
evaluate their performance under TD defense [Yang et al.,

width (B) c1 c2 c3
0.5 0.9873 0.9852 0.9889
0.4 0.9884 0.9857 0.9891
0.3 0.9886 0.9882 0.9895
0.2 0.9900 0.9970 0.9985
0.1 0.9993 0.9989 0.9992

Table 6: Cross-correlation coefficient between original audio (c1,
c2, c3) and our adversarial examples with different intensity widths.

k
IPC (Opt)

WER CER LCP
1/2 0.524 (0.930) 0.507 (0.933) 0.609 (0.806)
2/3 0.770 (0.930) 0.700 (0.948) 0.885 (0.826)
3/4 0.573 (0.933) 0.510 (0.938) 0.835 (0.839)
4/5 0.575 (0.955) 0.553 (0.969) 0.772 (0.880)
5/6 0.755 (0.941) 0.680 (0.962) 0.766 (0.858)

Table 7: AUC scores of different k on adversarial examples based
on IPC and Opt.

2018]. We follow the same experimental procedures as [Yang
et al., 2018], and adopt their evaluation metrics: the area un-
der curve (AUC) of word error rate (WER), AUC of character
error rate (CER), and AUC of longest common prefix (LCP).
Table 3 lists some examples of translated results for benign
and adversarial audios with the cut ratio k = 0.5. We can
see that segments of our adversarial examples can be equally
transcribed with the corresponding transcription of the whole
adversarial examples. Moreover, Figure 3(b) shows that IPC
has lower average WER and CER than Opt. We list the AUC
scores of three basic metrics under different cut ratios on our
adversarial examples in Table 7. The resulted AUC scores
for our adversarial examples are mostly distributed between
0.5 and 0.7, which means that the classifier with TD defense
has poor performance on our adversarial examples. It demon-
strates the robustness of our adversarial examples against TD
defense due to the preservation of temporal information.

6 Conclusion
In this paper, we propose a new Iterative Proportional Clip-
ping algorithm to generate robust adversarial examples for
ASR attacks. By iteratively performing proportional clipping
on the perturbation which we compute from the backpropa-
gated gradient through ASR model, we force the modified au-
dio waveform to maintain the trend in the original audio and
thus obtain adversarial examples with temporal dependency.
The user study demonstrates that IPC significantly constraints
the noise on the original audio. Our experiments show that
IPC based adversarial examples can not only compromise the
state-of-the-art Wav2letter+ model but also bypass the latest
temporal information based defense mechanisms.

Acknowledgements
This work was supported in part by National Natural Science
Foundation of China under Grant 61972448. The work of Yan
is supported in part by National Science Foundation award
CNS-1950171.



References
[Abdullah et al., 2019] Hadi Abdullah, Washington Garcia,

Christian Peeters, Patrick Traynor, Kevin RB Butler, and
Joseph Wilson. Practical hidden voice attacks against
speech and speaker recognition systems. arXiv preprint
arXiv:1904.05734, 2019.

[Assembly, 1994] ITU Radiocommunication Assembly.
Methods for the subjective assessment of small impair-
ments in audio systems including multichannel sound
systems, 1994.

[Biggio et al., 2013] Battista Biggio, Igino Corona, Davide
Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
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