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Abstract—Spatial cluster detection has been employed to
identify significant connected spatial clusters in a variety of
crowdsourcing applications in bioinformatics, social networks,
and network security. However, despite of providing tremendous
social benefits, the release of crowdsourced data will pose a con-
siderable threat to mobile users’ privacy. Differential privacy has
been adopted for privacy preservation of crowdsourced data, yet
the effective mining of protected data becomes challenging. In this
paper, we investigate the problem of spatial cluster detection on
privacy-preserving crowdsourced data. Specifically, we propose
PSCluster, a differentially private spatial cluster detection mech-
anism to provide services with data protected under a differential
privacy model. PSCluster’s key components include a hypothesis
testing framework for modeling differentially private spatial
data, and a hybrid algorithm that jointly conducts expectation
maximization (EM)-based parameter estimation and free-form
spatial cluster detection. We evaluate PSCluster over synthetic
data and real data from mobile crowdsourcing applications, and
compare PSCluster with two state-of-the-art baseline methods.
The experimental results show that PSCluster improves the utility
without sacrificing privacy.

I. INTRODUCTION

Recently, mobile devices have significant improvements
in terms of computing power, memory size, and on-board
sensor types. These devices are creating an increasing number
of mobile platforms with growing computing and sensing
capabilities, which have given rise to mobile crowdsourcing
[1], a newly-emerged paradigm that allows a crowd of users
to participate in the collection of valuable data to perform
large-scale data analytics for novel applications. Spatial clus-
ter detection has become a useful functionality of mobile
crowdsourcing applications, which enables the detection of
spatial clusters that present meaningful group/cluster behaviors
in a certain area or region, such as disease outbreak, traffic
congestion, crime hotspot, etc. Spatial cluster detection has
been extensively studied in the data mining field [2]–[5] with
applications in the field of bioinformatics, social networks, and
network security.

Mobile crowdsourcing has the potential to bring innovative
applications to provide added value for the society and the
contributors in real-time. However, in mobile crowdsourcing
applications, the data contributed by individuals can be sen-
sitive data, and the data release can lead to serious privacy
leakage. In fact, the crowdsourced data are usually published
by crowdsourcing platforms to allow third party data analysts
to search for insightful patterns [6], e.g., for the purpose of
monitoring traffic congestion, search trends or incidence of
influenza, etc. Surprisingly, sensitive information including

daily routines, medical records, location, social relations can
be extracted from the data shared by the crowdsourcing
platforms [7], which will disincentivize the users from par-
ticipating in the crowdsourcing tasks.

Counterintuitively, even the published collective statistics of
crowdsourced data used for spatial cluster detection can lead
to privacy leakage. In other words, the disclosure of users’
collective or aggregated statistical behaviors may compromise
the privacy of the individuals, such as the type of disease a
patient suffers from, the locations a commuter visits, and the
social relations of a mobile user. For example, the disease
tracking mobile crowdsourcing app [8] is capable of aggre-
gating crowdsourced disease infection data inside a region.
However, for a region containing a small block with only a few
households, the aggregated disease infection data may disclose
the real identify of patients with a specific type of disease,
which clearly violates user privacy. Moreover, by observing
disease infection statistics over time, the adversary may be able
to identify a patient who is newly infected with the disease.

In consideration of preventing the user privacy leakage from
collective statistics while performing spatial cluster detection,
we propose PSCluster, a differentially Private Spatial Clus-
ter detection mechanism to identify spatial clusters with
privacy-preserving crowdsourced data. The questions that
we want to address in this paper are that: how to design
effective and efficient spatial cluster detection over private
data with privacy guarantee? PSCluster can facilitate many
real-world applications, for example: 1) mobile crowdsourcing
app based on spatial cluster detection has been developed to
identify and predict disease outbreak, where the spatial cluster
denotes the disease outbreak region. However, the disease
infection counts over a certain region are sensitive information
that needs to be protected; 2) traffic congestion monitoring
can be enabled by mobile crowdsourcing to aggregate traffic
statistics from multiple mobile devices along the road, where
the spatial cluster denotes the congestion area. However, the
traffic statistics may leak individual user’s route information.

Differential privacy [9], which offers provable guarantees
on the amount of information been leaked, has emerged
as a compelling privacy model. The crowdsourcing appli-
cations apply differential privacy by imposing noise to the
raw collected statistics from mobile crowdsourcing to per-
turb the data. We focus on the problem of spatial cluster
detection with differentially private crowdsourced data.
The challenge is to model the differentially private data,
incorporate the model into spatial cluster detection mechanism,



and develop approximation algorithms to approach optimal
clustering results. To the best of our knowledge, this is the
first approach to detecting free-form spatial clusters in a
differential privacy-preserving environment. There are three
main technical challenges: 1) Modeling of spatial clus-
ters with differentially private crowdsourced data. As the
crowdsourced data from individual locations is protected by a
differential privacy protocol, it is unclear how the detection
of spatial clusters can explicitly handle the data variations
caused by the privacy-preserving process. 2) How can the
spatial clusters be detected effectively and efficiently? The
proposed method incorporates a joint process of EM-based
parameter estimation and connected subgraph detection, and
there is no existing solution that can handle the joint process
effectively and efficiently. 3) Effectiveness at different levels
of privacy protection. Different levels of privacy protection
are considered for different applications. How accurate is the
spatial cluster detection at different privacy levels?

In this paper, we consider a typical scenario that an ap-
plication server segments an area into multiple disjoint grids
and publish the privacy-preserving population statistics of
each grid for crowdsourcing data analysts. The data ana-
lysts then apply PSCluster to identify spatial clusters for
different applications. PSCluster utilizes a novel hypothesis
testing framework to formulate the privacy-preserving cluster
detection problem. Then, PSCluster jointly conducts EM-
based parameter estimation and free-form connected subgraph
detection to perform cluster detection.

Contribution. This paper makes the following contribu-
tions:

1) We formulate the problem of spatial cluster detection over
perturbed crowdsourced data from mobile devices under a
differential privacy model, which aims to provide cluster
detection while protecting user privacy.

2) We propose PSCluster, the first-known differentially pri-
vate spatial cluster detection mechanism. As the opti-
mized inference of PSCluster is analytically intractable,
we design an efficient approximation algorithm for
PSCluster based on a novel hybrid algorithm of the well-
known expectation maximization (EM) framework and
projected gradient descent optimization techniques, which
are tailored to capture the data perturbation.

3) We conduct comprehensive experiments to validate the
effectiveness and efficiency of the proposed techniques
in terms of cluster detection and runtime performance,
based on two real-world benchmark data sets for disease
outbreak and traffic congestion detection.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce some preliminary knowledge
on differential privacy, spatial cluster detection, and describe
problem settings of our private spatial cluster detection frame-
work. The crowdsourcing platform is shown in Fig. 1, which
consists of mobile users with crowdsourcing applications,
crowdsourcing data service infrastructure, and crowd data
analysts. The mobile users use their mobile devices to par-
ticipate in the mobile crowdsourcing tasks, contribute data to
the crowdsourcing data service infrastructure, and collect data
analysis results from the crowd data analysts. Crowdsourcing

Mobile Users

Crowdsourcing 
Data Service Data Analysts

Figure 1: Mobile crowdsourcing platform architecture

data service infrastructure collects data from mobile devices
and compute aggregated statistics, and publish the data to
crowd data analysts, who perform the identification of signif-
icant spatial clusters. To protect user privacy, the aggregated
statistics are perturbed by crowdsourcing data service using a
differential privacy model.

A. Differential Privacy
Differential privacy has become the standard privacy model

for privacy-preserving data analytics, which offers provable
guarantees on the amount of information that is leaked.
Differential privacy aims to ensure that the output of the
algorithm does not significantly depend on any particular
individual’s data, which provides a quantitative risk assessment
for the mobile users to decide whether to participate in the
crowdsourcing. A mechanism satisfies ✏-differential privacy if
the output of the mechanism is approximately the same within
a ratio e✏ when any single record in the dataset is removed,
added or arbitrarily modified. The ✏-differential privacy is
defined as follows.

Definition 1 (Differential Privacy). A privacy mechanism M
achieves ✏-differential privacy, where ✏ > 0, if for any two
datasets D and D0 differing on at most one record, for all
R ✓ Range(M),

Pr[M(D) 2 R]  e✏ · Pr[M(D0) 2 R]. (1)

✏ is the privacy budget representing the strength of privacy a
mechanism provides. Generally, smaller ✏ represents a stronger
privacy strength, which requires a larger perturbation noise.
Laplace mechanism is the most commonly used mechanism
to achieve ✏-differential privacy [10], which exploits the sen-
sitivity of function f , defined as:

S(f) = max
D,D0

||f(D)� f(D0)||, (2)

for all D and D0 differing on one record. Intuitively, S(f)
captures the maximum changes that could occur in the output
of f . The main idea of Laplace mechanism is to add noise
drawn from a Laplace distribution into the datasets to be
published, which is shown in the following definition.

Definition 2 (Laplace Mechanism). For any function f : D !
Rd, the Laplace Mechanism for any dataset D 2 D

M(D) = f(D) + hLap(S(f)/✏)id (3)



 

(a) A cluster in a gridded area (b) The grid graph of a cluster

Figure 2: A graph representation of a crowdsourcing map (shaded
grids form an arbitrary-shaped spatial cluster with high aggregated
statistics)

satisfies ✏-differential privacy, where the noise Lap(S(f)/✏) is
drawn from a Laplace distribution with mean zero and scale
S(f)/✏.

B. Spatial Cluster Detection
The goal of spatial cluster detection is to identify an optimal

cluster of nodes presenting similar cluster features. Spatial
cluster detection mechanisms model a spatial data set using
a graph. In particular, a graph is given as G = (V,E), where
V = {1, · · · , n}, n refers to the total number of nodes (spatial
regions), and E ✓ V⇥V. An edge (i, j) indicates that node i
and node j are spatially adjacent. Each node i has a feature that
is denoted as zi. In this paper, the problem of spatial cluster
detection is framed as a hypothesis testing problem [2], [4],
[5] to identify spatial cluster S with arbitrary shapes, which
is formulated as follows:

• Null hypothesis H0: zi ⇠ D(✓i), where D refers to a
background distribution of this feature when the node i
does not belong to a spatial cluster, and ✓i refers to the
parameters of the distribution that can be estimated based
on historical observations of this feature.

• Alternative hypothesis H1(S): If i 2 S, then zi ⇠
D(g(✓i, q)), where g(✓i, q) refers to the new parameters
of the distribution of zi that characterize the phenomenon
of this spatial cluster S, and q is a multiplicative factor
for elevating the mean of the distribution of nodes inside
the cluster [2].

The results of the hypothesis testing can be derived by evaluat-
ing the Logarithm Generalized Likelihood Ratio Test (GLRT)
statistic, which can be written in the following form [2]:

F (S) = log
maxq

Q
i2S

Prob(zi; g(✓i, q))Q
i2S

Prob(zi; ✓i)
, (4)

where Prob(zi; ✓i) is the probability density function (pdf) of zi
given the parameter ✓i. The most significant spatial cluster S ✓
V can then be identified by maximizing the above Logarithm
GLRT statistic function F (S) over all connected subsets of
nodes in V, where the spatial cluster can be arbitrary shape.
Subsequently, the decision problem can be formulated as:

max
S✓V

F (S) s.t. S is connected. (5)

We assume that D refers to a Gaussian distribution1, and
correspondingly, ✓i = (µi,�i), where µi and �i refer to

1We consider Gaussian distribution in our study because of its popularity
in this line of research and its convenience for fast computational inference.

the mean and standard deviation of the Gaussian distribution,
respectively; and g(✓i, q) = (q · µi,�i), and q > 1. In this
scenario, D(✓i) refers to a Gaussian distribution N (µi,�i),
and Prob(zi; ✓i) refers to the pdf of this Gaussian distribution
for zi given the parameters µi and ✓i. Problem (4) then has
an analytical form as follows [2]:

F (S) = C(S) log(C(S)/B(S)) +B(S)� C(S), (6)

where C(S) =
P

i2S

ziµi

�
2
i

and B(S) =
P

i2S

µ
2
i

�
2
i

.

C. Threat Model and Problem Formulation
Each mobile user reports their data to the crowdsourcing

data service in real-time. We consider the crowdsourcing data
service infrastructure as trusted, but regard the data publishing
process as insecure, which is a trust model adopted by other
researchers [7], [11]. The adversaries, who can be curious
third-party data analysts, can collect the published data and
attempt to compromise user privacy, i.e., seek to identify,
trace and profile contributors, or link the data records to
the corresponding mobile users. The adversaries can launch
attacks to identify contributors’ sensitive information over a
sparse dataset, where only a small number of mobile users
inside a grid contribute to the crowdsourcing applications.
The adversaries can also keep a database over a long time
period to identify the data owner using membership inference
attacks [12]. Correspondingly, instead of releasing original
crowdsourced data or data statistics, our privacy goal against
such adversaries is to provide a sanitized version of data for
publishing to achieve ✏-differential privacy.

In this paper, we consider the popular mobile crowdsourc-
ing applications (such as: disease outbreak prediction, crime
hotspot identification, traffic congestion monitoring) where the
statistic of each region corresponds to the count of users inside
the region. We segment the area into multiple grids as shown in
Fig. 2(a). The two grids are said to be neighbors when they are
connected by a common frontier. This map of interconnected
grids can be further simplified and represented by a graph,
where each grid is associated with a node, and when two grids
are neighbors, there is an edge connecting the nodes as shown
in Fig. 2(b). Every node has a feature corresponding to count
of users/reports collected by mobile crowdsourcing apps.

The crowdsourcing data service wishes to publish the statis-
tics of a certain crowdsourced data type inside a grid, which
can be the number of people who gets a certain type of disease,
the number of crimes happened, or the number of cars driving
on the road. Let the data be Z = (z1, z2, · · · , zn), where
n is the total number of the grids on a map. To provide
mobile user privacy protection, a sanitized version of Z, say
X = (x1, x2, · · · , xn) will be published instead of Z. In order
to provide differential privacy, we will add a noise ⌫i into
the privacy data zi (i.e., xi = zi + ⌫i) so that the user can
only see the variable xi instead of zi, and each noise variable
⌫i ⇠ Lap(ui = 0, bi = b), where b = S(f)/✏ is a constant
value. The problem we aim to address is:

Problem 1. Given differentially private crowdsourced data,
how to conduct spatial cluster detection with minimum im-
pacts on detection accuracy, effectiveness and efficacy, while
satisfying ✏-differential privacy.



III. PSCLUSTER: DIFFERENTIALLY PRIVATE SPATIAL
CLUSTER DETECTION

In this section, we present PSCluster, a private spatial clus-
ter detection scheme to identify significant spatial clusters with
differential privacy guarantee. We propose a new hypothesis
testing framework for private spatial cluster detection.

A. Hypothesis Testing Framework
Let xi be the aggregated statistics of all the crowdsourcing

data inside grid i after privacy preserving process, i.e. the
data to be released, and hence the true feature value zi is
a latent variable, which denotes the variable that is hidden
from the data analysts to avoid privacy leakage. Considering
the statistics as the results of a query Q, since each user can
only appear at most one region per time stamp, the sensitivity
S(Q) = 1. The relation between xi and zi can be written as
follows: xi = zi+⌫i, where ⌫i follows a Laplace distribution:
⌫i ⇠ Lap(0, b), and b = 1

✏
. Traditional spatial cluster detection

techniques are not directly applicable, as none of them has
considered the perturbation of the observations. As demon-
strated in our experiments in Section IV, a direct application
of traditional cluster detection techniques to the perturbed data
without specific modeling of the privacy preservation process
has limited detection capability.

In this paper, we propose the first-known differentially
private spatial cluster detection model using a new hypothesis
testing framework:

• Null hypothesis H0: xi|zi ⇠ Lap(zi, b), zi ⇠ N (µi,�i).
• Alternative hypothesis H1(S): If i 2 S, then xi|zi ⇠

Lap(zi, b), zi ⇠ N (q · µi,�i), where the unknown
multiplicative constant q > 1 indicates a raised mean
value of feature distribution for nodes inside the cluster,
and needs to be estimated based on the features of nodes
in S; otherwise, xi|zi ⇠ Lap(zi, b), zi ⇠ N (µi,�i).

Alternative hypothesis is supported when grid i is included in
the statistically significant spatial cluster, while null hypothesis
is supported when grid i does not belong to the cluster.
According to Eq. (4), the new Logarithm GLRT statistic has
the following form:

FDP (S) = log
maxq>1

Q
i2S

p(xi; q)Q
i2S

p(xi)

= max
q>1

X
i2S

p(xi; q)�
X

i2S

log p(xi),

(7)

where p(xi; q) =
R
p(xi|zi)p(zi; q)dzi. The problem of spatial

cluster detection in a privacy preserving environment can then
be formulated as:

max
S✓V

FDP (S) s.t. S is connected. (8)

Different from the traditional spatial cluster detection prob-
lem in which the Logarithm GLRT statistic function often has
an analytical form (e.g., Eq. (6)), the new Logarithm GLRT
statistic function as defined above is analytically intractable,
and the optimization of Problem (8) is very challenging (to be
elaborated below). There is no known algorithm that can be
directly applied to solve Problem (8) pertaining to differen-
tially private crowdsourced data. In the following section, we

propose an efficient hybrid approximate inference algorithm
that integrates a modified EM algorithm for parameter estima-
tion and a graph-structured convex optimization algorithm for
free-form cluster (connected subgraph) detection to address
the private spatial cluster detection problem.
B. A Hybrid Approximate Inference Algorithm

This subsection first presents a hybrid algorithm that jointly
integrates EM-based parameter estimation and connected sub-
graph detection. In particular, it decomposes Problem (8) to a
sequence of subproblems that are easier to solve, then presents
an efficient algorithm for solving each subproblem, and finally
studies the time complexities of the proposed algorithms.

1) A modified Expectation Maximization (EM) algorithm:
It is technically challenging to solve Problem (8), as the
objective function FDP (S) (i.e. Eq. 7) has a subproblem
that involves the estimation of the multiplicative constant
parameter q that is analytically intractable due to the mixture
of normal and Laplace distributions. The subproblem is:

max
q>1

log
Y

i2S

p(xi; q) = max
q>1

X

i2S

log

Z
p(xi|zi; q)p(zi; q)dzi.

The above subproblem is called a Maximum Likelihood Es-
timation (MLE) problem that can be solved using the well-
known EM algorithm [13]. EM algorithm is an iterative
method for finding maximum likelihood estimates of param-
eters. However, the standard EM algorithm is not directly
applicable as the above subproblem is only part of Problem (8)
and has an unknown set variable S in addition to the parameter
q. We propose a novel EM algorithm to solve Problem (8).
We denote t as the t-th iteration. There are two basic steps
in each iteration t, including the expectation step and the
maximization step. Suppose the estimated factor q in the t-
th iteration is denoted as q(t). The expectation (E) step refers
to the calculation of the lower bound function Q(q|q(t)):

log
Y

i2S

p(xi; q) =
X

i2S

log

Z
p(xi, zi; q)dzi

=
X

i2S

log

Z
p(zi|xi; q

(t))
p(xi, zi; q)

p(zi|xi; q(t))
dzi

�
X

i2S

Z
p(zi|xi; q

(t)) log
p(xi, zi; q)

p(zi|xi; q(t))
dzi

/
X

i2S

Ep(zi|xi;q(t))

⇣
log p(xi, zi; q)

⌘

=
X

i2S

Ep(zi|xi;q(t))

⇣
ln

1

2b
e�

|xi�zi|
b

1p
2⇡�i

e
� (zi�µiq)

2

2�2
i

⌘

/
X

i2S

2µiq · Ep(zi|xi;q(t))[zi]� µ2
i
q2

2�2
i

= Q(q|q(t)), (9)

where the first inequality (Line 3) follows from Jensen’s
inequality [13]. The expected value of the log likelihood
function Ep(zi|xi;q(t))[zi] is expanded (Line 5) according to the
following distributions: xi|zi ⇠ Lap(zi, b), zi ⇠ N (µi,�i).



The calculation of Ep(zi|xi;q(t))[zi] is analytically intractable
due to the fact that xi is the summation of a Gaussian
random variable and a Laplace random variable that are not
conjugate [14]. We apply Laplace approximation and obtain
an approximate result as:

Ep(zi|xi;q(t))[zi] =
xi�2

i
+ q(t)µib2

�2
i
+ b2

. (10)

The maximization (M) step is to find the factor q that
maximizes the quantity:

q(t+1) = argmax
q

Q(q|q(t)). (11)

An analytical solution of q can be identified such that the
gradient of the above objective function is 0:

2
X

i2S

Ep(zi|xi;q(t))[
uizi
2�2

i

]� 2q
X

i2S

Ep(zi|xi;q(t))[
u2
i

2�2
i

] = 0, (12)

and we obtain the analytic form of q(t+1) as a function of S
as below:

q(S) =

P
i2S Ep(zi|xi;q(t))

[uizi
2�2

i
]

P
i2S Ep(zi|xi;q(t))

[
u2
i

2�2
i
]
=

P
i2S

ui
2�2

i
Ep(zi|xi;q(t))

[zi]

P
i2S

u2
i

2�2
i

. (13)

Based on the result of the above M step, we obtain an
approximated version of Problem (8) using the estimated
function q(S) as a subproblem in the current iteration:

max
S

⇣X
i2S

log p(xi; q(S))�
X

i2S

log p(xi)
⌘

(14)

s.t. S is connected.

The basic steps of the modified EM algorithm are shown in
Algorithm 1. It is a modified version of the standard EM
framework because it has an additional step “Estimation of
S” in Step 6 in addition to the standard E and M steps in
Steps 4 and 5. Recall that the E and M steps both have an
unknown set variable S, which motivates the design of this
additional step to estimate and refine S in each iteration.

Algorithm 1: A hybrid algorithm for PSCluster
1 S? = ; ;
2 t = 0, q(t) = 1;
3 repeat
4 E-step: Compute Q(q|q(t)) according to (9);
5 M-step: q(S) = argmaxq Q(q|q(t))

=
P

i2S ui/2�
2
i ·Ep(zi|xi;q

(t))
[zi]

P
i2S u

2
i /2�

2
i

;

6 Free-form spatial cluster detection (S): Identify the
intermediate cluster Ŝ by applying Algorithm 2 to
solve Subproblem (14);

7 q(t+1) = q(Ŝ); S? = Ŝ;
8 t = t+ 1;
9 until |q(t+1) � q(t)| < ✏;

10 return S?;

2) An efficient algorithm for detecting free-form spatial
clusters: Subproblem (14) is simpler than Problem (8) as the
objective function of the former only has the discrete variable
S but the objective function of the latter has a mixture of
discrete variable S and numerical variable q. However, the
problem is still difficult as the objective function is highly
nonlinear. An exhaust search for solving Subproblem (14) is
impractical as the total number of all possible subsets (S)
is exponential with respect to the total number of nodes. In
fact, the problem is known to be NP-hard and does not admit
any constant-factor approximations even when the objective
function is a linear function, via a reduction from the net
worth prize-collecting Steiner tree problem [15]. To the best
of our knowledge, there is no existing discrete optimization
algorithm that can be applied to solve this problem subject
to a connectivity constraint. Therefore, we explore efficient
numerical optimization techniques to approximately solve a
relaxed version of this problem. We first represent S using
the vector form y 2 {0, 1}n such that S = {i | yi = 1}. The
function q(S) = q(y) can then be represented as:

q(y) =
yT [ u1

2�2
1
Ep(zi|xi;q(t))[z1], · · · ,

un
2�2

n
Ep(zi|xi;q(t))[zn]]

T

yT [ u1

2�2
1
, · · · , un

2�2
n
]T

.

Given the fact that

p(xi; q(y)) =

Z
p(xi|zi)p(zi; q(y))dzi,

and p(xi|zi) and p(zi; q(y)) are Gaussian and Laplace density
functions, respectively, the analytical form of p(xi; q(y)) is
known as [14]:

log(p(xi; q(y))) = � log(2
p
b)� µ

2
i q(y)

2

2�2
i

+ Ci(q(y))

and

log(p(xi)) = � log(2
p
b)� µ

2
i

2�2
i
+ C(1),

where

Ci(q(y)) =
h
e

xi
b +

(q(y)µi��2
i )2

2b�2
i · �

⇣
� xi � q(y)µi + �2

i

�i

p
b

⌘
+

e
� xi

b +
(q(y)µi+�2

i )2

2b�2
i · �

⇣xi � q(y)µi � �2
i

�i

p
b

⌘i
,

and �(·) refers to the cumulative density function of a
Gaussian distribution. Also, the objective function of Subprob-
lem (14) can then be reformulated as:

fDP (y) = hy(t), [log(p(x1; q(y))), · · · , log(p(xn; q(y)))]i�

hy(t), [log(p(x1)), · · · , log(p(xn))]i, (15)

where h·, ·i is a dot product operator between two vectors, y(t)
is the estimate of y in the previous iteration, and its gradient
rfDP (y) can be calculated based on the above analytical form
of fDP (y). We then focus on the following relaxed version of
Subproblem (14):

max
y2[0,1]n

fDP (y) s.t. supp(y) is connected, (16)



where y takes values from the continuous domain [0, 1]n in-
stead of the discrete domain {0, 1}n, and supp(y) = {i | yi >
0} refers to the indices of non-zero entries. As each entry in y
relates to a node in the network, supp(y) indicates the set of
nodes that belong to the spatial cluster, and thus is the expected
solution. Given the solution y to the above relaxed problem,
the cluster will be identified as supp(y) that is guaranteed to
form a connected subgraph.

We propose an efficient algorithm to solve Problem (16)
based on projected (or model-based) gradient descent (PGD)
optimization [16]. PGD is different from the traditional gra-
dient descent optimization in that PGD involves an ad-
ditional projection process that finds the best approxima-
tion of an intermediate solution b in the constrained space
{y | supp(y) is connected.}:

P(b) = arg min
y2[0,1]n

ky � bk22 s.t. supp(y) is connected. (17)

As the above projection is NP-hard due to a reduction from
the classical Steiner tree problem, two nearly-linear time
approximations have been designed to iteratively find the best
solution. Curious readers please refer to [17] for detailed
description.

• Tail approximation (T(b)): Find y 2 [0, 1]n, such that

ky � bk22  cT · min
supp(ŷ) is connected

kŷ � bk22, (18)

• Head approximation (H(b)): Find y 2 [0, 1]n, such that

y = bS , kbSk22 � cH · max
Ŝ is connected

kb
Ŝ
k22, (19)

where cH (set as
p

1/14) and cT (set as
p
7) are arbitrary,

fixed constants.
The basic steps are shown in Algorithm 2, which demon-

strates an iterative process that bounces between upper bound
(Head approximation) and lower bound (Tail approximation)
to approach an optimal result for Subproblem (14) [16]. The
first step (Line 3) in each iteration, b = yi + H(rfDP (yi)),
identifies an updated version of yi along the direction defined
by the projected gradient H(rfDP (yi)), in which pursuing the
maximization will be most effective. As the updated version
b is not guaranteed to satisfy the constraint that supp(b) is
connected, Step 4 identities an approximation of b in this
constrained space {y 2 [0, 1]n | supp(y) is connected} using
the tail approximation process. The iterations terminate when
the change of the estimated maximum from the previous
iteration is less than a predefined small threshold, e.g. 0.0005
(note that any small value would work).

The convergence analysis of Algorithm 2 can be found
in [18]. It can be readily shown that the objective value of
Subproblem (14) based on the intermediate solution is mono-
tonically increasing at each iteration. The experimental results
in [18] demonstrate that this algorithm converges in a small
number of iterations for general nonlinear cost functions, and
outperforms state-of-the-art algorithms for detecting arbitrary-
shape spatial clusters. Our experiments in this paper further
confirm the superior performance of this algorithm with our
unique score function fDP (Eq. 15).

Algorithm 2: An efficient algorithm for Subproblem (14)
1 i = 0, yi = 0;
2 repeat
3 b = yi + H(rfDP (yi));
4 yi+1 = T(b);
5 i = i+ 1;
6 until kyi+1 � yik < ";
7 return supp(yi+1) = {j | yi+1

j
> 0} ;

C. Time Complexity Analysis

Algorithm 1 is the overall algorithm, and its Step 6 is
implemented by Algorithm 2. As we obtain the analytical
forms for both the E and M steps in Eq. (9) and Eq. (13),
respectively, the overall time cost for these two steps is O(1).
Thus, the time cost of Algorithm 1 is mainly decided by the
time cost of Step 6 (Algorithm 2). For Algorithm 2, the time
cost to calculate the gradient rfDP (yi) in Step 3 is O(n),
where n refers to the total number of nodes in the input
graph. The time costs of head approximation in Step 3 and
tail approximation in Step 4 are both O(m log3 n) [17], where
m refers to the total number of edges.

We denote the total number of iterations in Algorithm 1 as
L1 and the total number of iterations in Algorithm 2 as L2. In
mobile crowdsourcing applications, the input graph is defined
based on spatial regions (e.g., grid cells) as nodes, and their
spatial adjacencies as edges. In this scenario, the input graph
is a planar graph and the total number of all possible edges is
at most 3n � 6 [19]. The total time cost of Algorithm 1 can
then be calculated as O(L1 · L2 · (n log3 n+ n)). In practice,
as demonstrated in our experiments, both Algorithm 1 and
Algorithm 2 converge fast, and their numbers of iterations
L1 and L2 are small with respect to n. Considering all the
previous practical factors, the time cost of Algorithm 1 is
O(n log3 n) and scales nearly-linearly with respect to n.

The convergence analysis of Algorithm 1 is complicated
due to the design of Step 6, which requires solving a non-
convex optimization problem (Problem (14)), in addition to
the modified Expectation and Maximization steps in Step 4
and Step 5. We empirically demonstrate the fast convergence
of Algorithm 1 using experiments in Section IV-B. In future,
we will conduct theoretical analysis to prove its convergence.

IV. EVALUATION

The quality of the significant cluster detection in a graph
G can be measured using three metrics, including precision,
recall, and F-measure. Denote the detected cluster as S ✓ V,
and the true cluster as S?, where the cluster can be disease
outbreak region, traffic congestion region, etc. The three
metrics are defined as:

precision(S) =
S \ S?

|S| , recall(S) =
S \ S?

|S?| ,

F-measure = 2 · precision(S) · recall(S)
precision(S)+recall(S)

. (20)



(a) F-measure (✏ = 0.2) (b) F-measure (✏ = 0.25) (c) F-measure (✏ = 0.4) (d) F-measure (✏ = 1)

Figure 3: Utility comparison with varying � using synthetic data

(a) Disease Outbreak Data (b) Taxi Traffic Data

Figure 4: Utility comparison using real data

Specifically, F-measure represents a combined score of
precision and recall, which we use as a main performance
metric. The evaluation results in terms of precision and recall
are omitted due to space limitations. Since there is no existing
private cluster detection algorithms available, we implement
two well-known baseline methods for cluster detection in noisy
data for comparison: EventTree [20] and EdgeLasso [21]:

• EventTree reformulates the detection problem as a vari-
ant of prize-collecting Steiner tree (PCST) problem and
applies fast approximation algorithms of the PCST prob-
lem [15] to detect the most significant compact spatial
cluster in the input graph, where the compactness is
defined based on a minimum-distance tree of the cluster.

• EdgeLasso reformulates the cluster detection problem as
a generalized fused lasso problem and applies the state-
of-the-art sparse learning techniques to detect the most
significant free-form spatial cluster in the input graph.

Based on previous research [20], [21], these two baseline
methods outperform existing methods on both running time
and accuracy, which also have been tested to work well with
noisy data. They simply treat the private data as noisy data
to carry out cluster detection. In this section, we evaluate
the spatial cluster detection performance of PSCluster using
synthetic data generated from Poisson distribution, and real
data from disease outbreak and taxi traffic applications.

A. Evaluating private spatial cluster detection performance
Evaluation Using Synthetic Data: We generate synthetic data
using Poisson distribution (i.e. f(z;�) = Pr(X = z) =
�
k
e
��

k! ), since Poisson distribution is one of the most popular
distribution for count data in a geographic map [22]. Each data
point corresponds to the count of crowdsourced data inside one

grid. Then Laplace distributed noise is added to perturb the
data point. The normal data is drawn from Poisson distribution
with � = 5. The data points forming the significant spatial
cluster are drawn from Poisson distribution with varying � in
the range of [15, 30]. The graph consists of 20⇥20 grids with
400 nodes. The size of the cluster is set to 5% of the graph
size, and the nodes of the cluster are generated using random
walk. The performance metrics are computed using Eq. (20).

We evaluate the private spatial cluster detection perfor-
mance of PSCluster in terms of F-measure. We compare the
performance against two baseline methods. The F-measure
performance with respect to � is shown in Fig. 3. From
Fig. 3(a) to Fig. 3(d), we change the parameter � with a fixed ✏.
We can see that when ✏ is small, PSCluster outperforms two
baseline methods. However, as ✏ gets bigger, the F-measure
performance of PSCluster gets close to that of the EventTree
baseline method. As mentioned previously, smaller ✏ indicates
a stronger privacy strength which translates into a larger pertur-
bation noise. The results show that PSCluster performs better
than other methods in case of a larger perturbation noise,
because we take the noise into account in the algorithm design,
and strive hard to remove the impacts of noise during spatial
cluster detection. As shown from the results, the performance
of baseline methods deteriorates when the perturbation noise
gets larger. In the case when the perturbation noise is low, the
baseline methods show their strengths in detecting significant
cluster, and PSCluster can also maintain a high cluster detec-
tion performance. These results validate PSCluster’s superior
cluster detection performance under a high level of differential
privacy protection. Although the F-measure could drop around
0.6 in some cases, we note that PSCluster can be more resilient
against perturbed data with large added noise compared with
other methods.
Evaluation Using Disease Outbreak Data: We also evaluate
PSCluster using real data from disease outbreak research [23]
for disease outbreak detection. The data corresponds to New
York city benchmark data, which is a collection of public
benchmark datasets used for the evaluation and comparison
of early disease detection methods. Geographic coordinates
(representing the approximate center of each zip code) and
population numbers for 176 NYC zip codes are used for these
datasets. Among five New York City boroughs, we use Queen
Region with 63 zip codes. After a careful initial examination
of the data, we find that at a certain disease outbreak day,
node count inside outbreak region (Queens) has mean of 2.34,
and standard deviation of 1.15. On the other hand, outside the



outbreak region, the node count has mean of 0.52, and standard
deviation of 0.74. As the count value is small, the perturbation
noise should also be small. Therefore, we let perturbation noise
follow Laplace(0, b), where b 2 [0.2, 1] (i.e., ✏ 2 [1, 5]).

Here, we only compare EventTree with PSCluster to prevent
duplications. Fig. 4(a) shows the F-measure performance of
PSCluster outperforms that of EventTree with varying ✏. The
increasing ✏ (i.e., reducing noise) improves the performance
of PSCluster. The F-measure curves are not smooth due to
the variability of the data outbreak data. The slight decline in
F-measure curve of PSCluster (when ✏ is 1.4) is caused by
the large and randomly generated noise. However, PSCluster
can always detect disease outbreak clusters more accurately.
This indicates that PSCluster is able to achieve superior utility
using real world data sets even when the added noise is
large, by modeling the data perturbation of differential privacy
preservation.
Evaluation Using Taxi Traffic Data: The traffic data set
is collected for taxi pickup data analytics in 01/01/2010 in
New York City [24]. We use spatial cluster detection to detect
congestion areas. We randomly select a region in the urban
area of New York City with four vertex coordinates. The size
of the region is 16, 646⇥6, 840 meters2. We evenly separate
the region into 100⇥ 100 grid cells, with each grid spanning
166 ⇥ 68 meters2. The average count of taxi pickups inside
the grid is 22.92, with the standard deviation as 5036.03. Total
count of taxi pickups inside the region is 229,230. Inside the
cluster grids (i.e. traffic congestion grids), the count value
has mean of 202.55 with standard deviation of 140.78, while
outside the cluster grids, the count value has mean of 6.04
with standard deviation of 18.22. We allow the perturbation
noise to be comparable to the count value, which follows
Laplace(0, b), where b 2 [10, 20] (i.e., ✏ 2 [0.05, 0.1]).

Fig. 4(b) shows the F-measure performance comparison
w.r.t. ✏, where we can see PSCluster outperforms EventTree
significantly with different levels of privacy protections. The
high data variability causes a non-monotonic increase of
PSCluster’s F-measure performance with the increasing ✏ (i.e.,
reducing noise), and we find that PSCluster can even reach
95% of F-measure when ✏ is 0.1. The minor performance drop
with small ✏ is again caused by the large added perturbation
noise that complicates the spatial cluster detection. Comparing
Fig. 4(b) with Fig. 4(a), we can see the cluster detection rate
for disease outbreak is much lower, since the disease outbreak
data itself is more noisy. In summary, we show that PSCluster
has superior spatial cluster detection performance with data
perturbation at different privacy protection levels, significantly
outperforming the state-of-the-art methods.

Next, we evaluate the detection performance of PSClus-
ter w.r.t. the grid size. We separate the entire region into
different number of grids: 10 ⇥ 10, 25 ⇥ 25, 50 ⇥ 50, and
100⇥ 100, corresponding to different grid sizes from large to
small. The F-measure performance of PSCluster with different
grid numbers (grid sizes) is shown in Fig. 5, and we have
three major observations. First, F-measure plateaus after ✏
exceeds a certain value, because a larger ✏ represents a smaller
noise, which imposes less impacts to the cluster detection
performance. Second, a smaller grid number indicates a larger
grid size, and thus a larger taxi pickup counts. Therefore,

Figure 5: Cluster detection per-
formance w.r.t. grid size

Figure 6: Runtime perfor-
mance of PSCluster

with a smaller grid number, only larger noise (smaller ✏) will
have a negative impact. Third, F-measure improves with the
decreasing grid size (or increasing grid number). The reason
is as follows: consider a large grid that contains several small
grids. In case that only a small number of small grids are
included in the cluster, the large grid will be excluded from
the cluster, which causes a reduction in recall. Otherwise, in
case that this large grid is indeed included in the cluster, it
will cause a degradation in precision. Both two cases present a
degradation in F-measure performance with large grids. Also,
inside small grid size (100 ⇥ 100 grid map), the counts are
smaller, which leads to a performance fluctuation when noise
is relatively large (i.e., ✏ 2 [0.01, 0.02]). Based on all the
above experiments, we show that our algorithms converge in
all cases.

B. Evaluating Runtime Performance
Table I compares the runtime of our method with two

baseline methods based on the synthetic data set in a 20⇥ 20
grid map. The average runtime is assessed by calculating the
average of computational time consumption of each method
over 50 rounds. Among these 50 rounds, we vary ✏ from
[0.2, 1], and change � from [15, 30]. It is noteworthy that our
method can always converge to yield results, and the runtime
also denotes the convergence time. We note that these two
baseline methods are among the most efficient methods in
the current literature for spatial cluster detection. The results
indicate that the runtime of our method is comparable to the
baseline methods, although our method achieves significant
improvement of cluster detection performance by addressing
the spatial cluster detection problem in the privacy-preserving
setting that is technically more challenging as discussed in
Section III. Fig. 6 shows the runtime of our method w.r.t.
synthetic data of different grid sizes. The results indicate that
our method can scale to support large grid numbers.

V. RELATED WORK

Private Preserving Mobile Crowdsourcing: Mobile crowd-
sourcing has attracted attentions of the research community,
as it enables mobile users to fully utilize the sensing and
computing capabilities of mobile devices to participate and
accomplish important crowdsourcing tasks. Recently, privacy-
preserving problem has been studied in mobile crowdsourcing
systems. SPPEAR [25] uses anonymization networking and
group signature schemes to protect user privacy. Miao et al.
[26] investigate privacy-preserving truth discovery to take user
reliability into account, which is complementary to our work.



Table I: Runtime performance (average runtime over 50 rounds)
EventTree (seconds) EdgeLasso (seconds) PSCluster (seconds)
0.901 1.376 1.642

Kellaris et al. [11] propose w-event privacy, which is based
on differential privacy, to prevent any event sequence disclo-
sure occurring over a time-series data stream. RescueDP [7]
builds upon w-event privacy to design a private crowdsourced
data publishing mechanism on spatial-temporal data. In this
paper, we consider a new problem of spatial cluster detection
over differentially private data generated by crowd users and
published by crowdsourcing applications.
Spatial Cluster Detection: Exhaustively searching spatial
clusters is impractical, as the total number of possible spa-
tial clusters scales exponentially with respect to the total
number of spatial regions (n). To avoid this computational
bottleneck, a number of methods are designed to identify
relatively simple clusters of fixed shapes, such as rectangles
and circles, and the total number of possible spatial clusters
scales quadratically with respect to n [2], [4], [5]. In recent
years, more advanced methods have been proposed to detect
free-shape spatial clusters, which model the spatial regions
using a generalized graph, and represent a spatial cluster as
a connected sub-graph. In particular, Speakman et al. [27]
propose a heuristic algorithm to identify the highest scoring
connected subgraphs based on shortest paths in a given graph
structure with real-valued weights at each node. Sharpnack et
al. [21] consider a generalized likelihood ratio function, a type
of parametric scan statistic, as the score function, and present
EdgeLasso, a sparse learning method based on edge-lasso
regularization. Rozenshtein et al. [20] present EventTree, a
fast algorithm based on approximation algorithms of the prize-
collecting Steiner tree problem for detecting compact spatial
clusters. However, none of these methods has considered
privacy protection of spatial data.

VI. CONCLUSION

In this paper, we propose PSCluster, a privacy-preserving
spatial cluster detection scheme under a differential privacy
protection model. We design a framework for PSCluster
consisting of scan statistics, and a novel hybrid algorithm
integrating the EM algorithm and projected gradient descent
optimization. We apply PSCluster to detect clusters with two
different types of real-world mobile crowdsourcing application
data. Extensive experiments show that PSCluster outperforms
state-of-the-art methods and improves the utility of spatial
cluster detection with privacy guarantee.
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