
SPRIDE: Scalable and Private Continual
Geo-Distance Evaluation for Precision Agriculture

Qiben Yan⇤ Hao Yang⇤ Mehmet C. Vuran⇤ Suat Irmak†
⇤Computer Science and Engineering, University of Nebraska-Lincoln, USA Email: {qyan,hyang,mcvuran}@cse.unl.edu

†Biological Systems Engineering, University of Nebraska-Lincoln, USA Email: suat.irmak@unl.edu

Abstract—Precision agriculture relies on real-time data gath-
ering and analysis to maximize yield, minimize environmental
impact and reduce cost, which has been envisioned as a new
paradigm to revolutionize modern agriculture. However, the col-
lection of farming data, especially geospatial data, raises concerns
about potential privacy leakage. In this paper, we propose a novel
scalable and private continual geo-distance evaluation system,
called SPRIDE, to allow application servers to provide geographic
based services by computing the distances among sensors and
farms privately and continuously. The servers determine the
distances without learning any additional information about their
locations. The key idea of SPRIDE is to perform efficient distance
evaluations on encrypted locations over a sphere by leveraging
a homomorphic cryptosystem. To scale for a large user base, we
propose novel and practical performance enhancements based
on data segmentation and distance prediction techniques for
reducing computation/communication costs. Through extensive
experiments on a real world mobile trace dataset, we show
SPRIDE achieves real-time private distance evaluation on a
large network of farms, attaining at least 17 times runtime
performance improvement over existing methods. We further
show SPRIDE can run on resource-constrained mobile devices
with low overhead.

I. INTRODUCTION

Precision agriculture has been envisioned as a new paradigm
to revolutionize modern agriculture by collecting and pro-
cessing data in real-time, with the objective of optimizing
seeding, irrigation, fertilization, harvesting, and other farming
practices [1]. Farm fields usually have spatial variations of
soils types, moisture levels, and nutrient availability. Precision
agriculture utilizes spatio-temporal information to determine
field variability, ensure optimal use of inputs, and maximize
the outputs and profits from a farm [2]. By leveraging in-situ
sensing, geographical information systems (GIS), and global
positioning systems (GPS), farmers can more precisely deter-
mine their resource allocations for best outcomes. Moreover,
due to the high correlation in some of the farm-related data
over large distances (e.g., precipitation, soil type), information
from multiple farmers can be fused to make informed deci-
sions. Consequently, precision farming applications rely on the
data across multiple farms with detailed spatial information.

Despite its potential advantages, data collection in precision
agriculture has raised several concerns about data privacy [3].
More specifically, one of the major concerns of geospatial data

This work was supported in part by the US National Science Foundation
under grants CNS-1566388 and CNS-1619285.

collection is location privacy [4]. The farming applications
require the field data to contain detailed spatial information,
which is shared with service providers or third party data
analysts to carry out geospatial data analysis. Unfortunately,
we have seen a growing number of server data breach in-
cidents in recent years [5]. The disclosure of location data
will be disastrous, since the physical traces of the farms’
sensors/machines can not only expose their physical locations,
but may also lead to other unintended consequences, such
as: exposure of proprietary data analysis algorithm, planting
strategies, or crop yield information. This is significantly
harmful to the farmers because this information is directly
related to their livelihoods. Furthermore, state- and country-
wide implications exist with respect to food security [1]. Yet,
we are not aware of any work that addresses privacy issues in
agriculture.

Recently, several location privacy protection mechanisms
have been developed in other fields [6]. One popular type
of protection mechanisms is based on location obfuscation
techniques that transform the true locations into an area
or a perturbed location [4]. However, most existing spatial
transformation techniques are subject to advanced location
inference attacks [7]. More importantly, the perturbation of
true locations will affect the utility of geographic services for
agriculture. Thus, a privacy-preserving mechanism to protect
location information without sacrificing the application utili-
ties is needed.

We observe that many farming applications may not need
the actual locations to provide geographic services [8]. More
specifically, farming apps can perform data analysis based
on the geo-distances among farms and sensors. For instance,
relationships between the distance of farms and the difference
in the soil moisture or temperature levels can be used to
guide a better irrigation procedure. Yet, the accuracy and
quality of these services depend on gathering information
from many farmers. Sharing information is a major issue for
farmers until they are ensured that their shared data does
not leak any private information. In this paper, rather than
protecting the location traces through obfuscation techniques,
we investigate the problem of privacy-preserving continual
distance evaluation initiated by a server on a large network
of farms, without requiring the farms to disclose any exact
location data to the server.

Note that the distance computation can be conducted be-
tween entities such as: farms, sensors, and/or machines on978-1-5386-0683-4/17/$31.00 c� 2017 IEEE

the farm, which can be stationary or mobile. There are three
main challenges in designing a privacy-preserving continual
distance evaluation mechanism for precision agriculture: C1:
distance evaluation process should not leak any additional in-
formation about any entities’ location traces to servers or third-
party analysts; C2: adversaries eavesdropping communications
between entities and the server should not have any chance in
compromising the location privacy of individual entities; C3:
since the entities are sometimes moving at a high speed (e.g.
farm vehicles), or can be resource constrained but have a large
quantity (e.g., sensors), the distance evaluation mechanism
should not only be accurate but also efficient, so that the
server is capable of tracking the distances among multiple
entities in real-time. Recently, researchers have investigated
privacy-preserving distance calculation [9], [10] and proximity
protocols [11], [12], with the goal of addressing C1 and C2
for mobile applications. However, they all focus on privacy-
preserving computation of distance between two users: Alice
and Bob, while the distance evaluation among a number
of entities in a continuous manner (C3) remains untouched.
Hence, scalability is still an open issue in this realm.

In this paper, we present SPRIDE, a cloud-enabled Scalable
and PRIvate continual geo-Distance Evaluation for precision
agriculture. SPRIDE utilizes homomorphic cryptosystem to
protect the locations of individual farms or sensors. Note
that homomorphic cryptosystem has been used in privacy-
preserving distance calculation [10], [11] for a pair of users.
SPRIDE aims to provide distance evaluation for multiple
farms at a cloud server in a continuous and scalable manner.
SPRIDE allows mobile entities to interact with servers without
disclosing their exact locations, while the server privately
computes the distances between entities in an efficient manner.
Then, the server can provide spatio-temporal services (e.g., ir-
rigation regimen) based on the calculated distances, or send the
distance information to the farmers either for their own record
or to facilitate their localized computations. The interactions
between farms and servers are designed to be efficient with
minimum overhead.

Besides agricultural applications, there are other potential
mobile applications that can build upon SPRIDE. Private
smart navigation is one attractive example, where a system
can complement or serve as an alternative to Google Maps
for traffic-aware smart navigation while protecting users’ lo-
cation privacy. SPRIDE can be used as a key component in
private smart navigation, where the mobile users refrain from
uploading their GPS location data to the server. The server uses
SPRIDE to privately and continuously calculate the distance
between mobile users, which can facilitate the identification
of traffic conditions on the road.

To the best of our knowledge, this is the first work that
investigates geospatial data privacy issues in precision agri-
culture. This paper makes the following contributions:

• We design and implement a cloud-based private continual
geo-distance evaluation system, SPRIDE, for practical
privacy-preserving distance tracking in precision farm-
ing applications. SPRIDE utilizes cloud-based distance

Farming Application Server

Farms

Figure 1: Precision agriculture system model

measurement based on a homomorphic cryptosystem
to support large-scale distance evaluations for multiple
farms.

• We propose practical performance enhancements to im-
prove the real-time distance evaluation performance of
SPRIDE system, using data segmentation and distance
prediction techniques. The enhanced SPRIDE attains su-
perior real-time distance tracking performance, which can
be scaled to accommodate a large number of farms.

• We conduct comprehensive experiments to evaluate
SPRIDE’s distance computation performance using a real
world dataset, and show the real-world applicability of the
SPRIDE system for distance tracking.

The rest of the paper is organized as follows. Section II
introduces the system model and relevant background infor-
mation. Then, Section III presents the SPRIDE system design.
The system evaluation is demonstrated in Section IV. After
reviewing related work in Section V, the paper concludes with
Section VI.

II. SYSTEM MODEL AND BACKGROUND

In this section, we illustrate our system model for privacy-
preserving distance evaluation mechanisms, and describe the
background knowledge including Homomorphic Encryption
and UTM projection for representing geo-locations.

A. System and Attack Model
We consider a generic precision agricultural system consist-

ing of app cloud server and mobile/stationary users (including
farms, farmers, sensors, and machines) as shown in Fig. 1.
App cloud server performs data collection and analysis, and
provides geographic services to the farmers, while the farmers
receive services without disclosing their true locations to the
app cloud server. The cloud server is considered as semi-
honest (honest but curious), who is curious about individual
users’ whereabouts but follows the protocols honestly. We
assume the origin of the users’ geospatial data is successfully
hidden by using anonymized protocols such as Tor networks
[13], so that IP geolocation mechanism will not be able to
determine the geolocation of hosts based on IP addresses of

the packets. The farmers are also considered as semi-honest,
who may attempt to infer other farms/devices’ locations when
they are not nearby. On the other hand, there is no need
to protect users’ location privacy against nearby users (i.e.,
the distance value is small). Note that we do not consider
malicious users faking their locations, who can be mitigated
by tamper-resistant devices or unforgeable location tags [9].
We do not consider colluding users sharing information with
each other, and also the denial of service attack is out of scope.

B. Homomorphic Encryption
SPRIDE utilizes Homomorphic Encryption (HE) to protect

the location data. HE allows arbitrary computations (e.g.,
additions, multiplications, quadratic functions, etc.) on ci-
phertexts while preserving decryptability. The most powerful
HE, namely fully Homomorphic Encryption (FHE), supports
unlimited number of additions and multiplications, which
has been utilized to support privacy-preserving data analytics
[14]. However, FHE system is computational costly to be
used in real-time applications [15]. Partially Homomorphic
Encryption (PHE) supports limited operations on ciphertexts,
which is more efficient and also applicable to our scenario.
One implemention of PHE, namely the Paillier’s system [16],
is a simpler and more efficient PHE which will be used in our
mechanisms. Paillier system only involves one multiplication
for each homomorphic addition and one exponentiation for
each homomorphic multiplication. In the system, a user can
encrypt the plaintext m 2 Z

n

with a public key pk = (g, n)
as:

c = E

pk

(m) = g

m

r

n

mod n

2
, (1)

where r 2 Z⇤
n

is selected randomly and privately by the
user, and Z⇤

n

denotes the multiplicative group of invertible
elements in Z

n

. The homomorphic property of Paillier system
can be described as follows: E

pk

(m1) ·Epk

(m2) = E

pk

(m1+
m2), E

pk

(m1)m2 = E

pk

(m1 ·m2).

C. UTM Projection
UTM (Universal Transverse Mercator) is a projected coor-

dinate system, which is a type of plane rectangular coordinate
system. UTM serves as an alternative coordinate system to
geographic coordinate (i.e. Latitude and Longitude) system
as used by GPS navigation systems. UTM coordinate system
provides a referencing frame to define the positions of objects.
SPRIDE is designed to work on UTM format data, as the UTM
system greatly simplifies the distance calculation between two
objects on earth.

With UTM, the Earth is divided into 60 zones, each being a
six-degree band of longitude. To minimize the scale distortion
within each zone, each of the 60 zones gets projected onto a
plane separately. The meridian at the center of each zone is
called the central meridian (CM). Each zone is divided into
horizontal grids with eight-degrees of latitude wide, which
are labeled with grid letters ranging from C to X from
south to north. The position of a point in the rectangular
coordinate system is defined by the distance from x and y
axis, which uses a measurement unit such as meters. The

point can be represented as (z, x, y), where z specifies the
zone including the zone number and grid letter, x denotes
the easting coordinate, and y denotes the northing coordinate.
The value of x falls in the range of [166, 000, 834, 000], and
the value of y falls into [0, 9, 999, 999] [17]. For instance, the
USA Contiguous States are residing in 10 UTM zones, and
y ranges in [2, 700, 000, 5, 500, 000]. One can use the simple
Pythagorean Theorem to calculate the distance between two
coordinates in UTM form [17].

III. SPRIDE DESIGN

In a nutshell, SPRIDE offers a continual distance evaluation
system for precision farming. We first design a privacy-
preserving distance measurement scheme for SPRIDE, which
allows the cloud to compute the distance between any farms
or sensors accurately in real time. Then, we enhance the
performance of SPRIDE to scale to a large user base. SPRIDE
is supported by a cloud infrastructure with a cloud server
serving a large network of farms to enable cross-farm data
analytics.

A. Location Data Preprocessing
SPRIDE operates over UTM format location data. There-

fore, after receiving the (latitude, longitude) location data
from GPS module, the local data server will first convert
the location data into UTM format using the formulas of
Karney [18]. Every user converts the location data as an offline
computation before interacting with the app cloud server. The
UTM data has the format of (z, x, y). In the case that two
locations (e.g., L1 : (z, x1, y1) and L2 : (z, x2, y2)) reside
in the same zone1, the distance can be computed easily (i.e.,
d12 =

p
(x1 � x2)2 + (y1 � y2)2).

B. Cloud-Based Privacy-Preserving Distance Measurement
The server will compute the distance between any pair

of users requesting the service, while the users are required
to submit encrypted locations to the cloud. In case there
are a large number of farms, pairwise distance computations
will incur considerable computational costs. Since distance
evaluation for users that are too far away is generally not
useful, the server divides a large service area into several
sections. The users will disclose the section information to
the server, and pairwise distance evaluation will be conducted
inside each section. Note that the section size should be large
enough to constrain privacy leakage, and also small enough to
limit the computational costs. The service area segmentation
for farming applications is orthogonal to this work, and we
plan to investigate it in future.

To start the process, each user will send the section in-
formation to the cloud, based on which the cloud identifies
each user’s zone. SPRIDE uses zone information to identify
three different types of positional relationships (PRs), when
we need to use different metrics to calculate the geo-distance
between users: (1) Type I PR: two locations are within the
same hemisphere in the same zone; (2) Type II PR: two

1For ease of presentation, zone is used to denote UTM zone hereafter.

locations are within different hemispheres in the same zone;
(3) Type III PR: two locations are in neighboring zones.

Note that when the distance between two objects enlarges,
errors in distance calculation increases [17]. However, farming
applications mostly consider to associate data from farms that
are not too far away from each other (but also not nearby).
Thus, SPRIDE practically avoids distant users, thereby ensur-
ing the accuracy of distance measurement. Here, we present
the algorithm for Type I PR, corresponding to the most
common case when two locations are residing in the same
hemisphere in the same zone. We use Paillier cryptosystem to
achieve the privacy-preserving distance measurement between
any two users. One major concern with asymmetric cryp-
tosystem is its expensive computational cost. As our distance
measurement mechanism may need to serve a large number
of farms, we strive to improve the mechanism’s computational
efficiency. As a result, we minimize the usage of Paillier
encryption in SPRIDE. In fact, we only apply Paillier encryp-
tion to compute the scalar product, which greatly improves
the computational efficiency. The complete privacy preserving
distance measurement algorithm is shown in Algorithm 1.

To compute the distance of U

i

and U

j

with Type I PR, or
d

ij

, the cloud needs to learn the following squared distance
value using Pythagorean Theorem:

d

2
ij

= (x
i

�x

j

)2+(y
i

�y

j

)2 = x

2
i

+x

2
j

+y

2
i

+y

2
j

�2x
i

x

j

�2y
i

y

j

.

(2)
For the distance measurement between user U

i

and user U
j

, U
i

needs to compute two encryptions and one decryption, while
U

j

only needs to perform two exponentiations. There are two
rounds of communications between cloud server and users:
In the Preparation, the user’ location components, including
x

2
i

+ y

2
i

and encrypted location, are uploaded periodically,
allowing cloud server to track the real-time distance measure-
ment. In the First Round, the cloud then interacts with each
user (in this case, U

j

) to get the encrypted product. In the
Second Round, the cloud interacts with the other user U

i

to
get the decrypted scalar product. In the end, the cloud server
gets the distance measurement, without knowing the locations
of any users. As the cloud receives x

2
i

+ y

2
i

, x

2
j

+ y

2
j

, and
obtains x

i

x

j

+ y

i

y

j

during the Second Round, the distance
d

ij

can be computed according to (2). Meanwhile, each user
keeps its location private from other users. This algorithm can
be easily extended to compute the distance between a user
and a fixed Point of Interest (PoI), in which case, the cloud
will execute the homomorphic operations with the known PoI
location.

The cloud-based distance measurement can effectively com-
pute the distance between any pair of users or the distance
from a user to a fixed PoI on a map. The cloud is capable
of computing multiple distance measurements from one end
(e.g. U

i

) to multiple users. In such case, the cloud will send
the encrypted location from U

i

to all the other users. All the
other users receiving multiple encrypted locations can perform
the homomorphic operations using their own locations. Note
that the cloud does not have the private keys of the ciphertexts,

Algorithm 1: Cloud-based Privacy Preserving Distance
Measurement

1 Setup: N users have their own locations in UTM format
(z

i

, x

i

, y

i

), i 2 [1, N];
2 Each user U

i

is assigned a pair of private key and public
key of Paillier’s cryptosystem (sk

i

, pk

i

). Enc
pk

denotes
the Paillier encryption;

3 Preparation: Each user U
i

uploads x

2
i

+ y

2
i

to cloud
server, and generates the ciphertexts of encrypted
location Enc

pki(xi

), Enc
pki(yi) and sends them to

cloud server;
4 First Round: If cloud server initiates the process of

computing the distance of user U
i

and user U
j

, the
cloud server sends the encrypted location from U

i

to U

j

;
5 After receiving the ciphertexts, U

j

executes the
homomorphic operation and sends the encrypted
product Enc

pk

(x
i

)xj · Enc
pk

(y
i

)yj to the cloud;
6 Second Round: the cloud sends the encrypted product

back to U

i

for decryption;
7 U

i

then decrypts the scalar product x
i

x

j

+ y

i

y

j

, and
sends it back to the cloud;

8 The cloud computes the distance between U

i

and U

j

using Eq. (2).

thus is unable to decrypt the encrypted product.

C. Security Analysis of Cloud-Based Privacy Preserving Dis-
tance Measurement

In Algorithm 1, it can be observed that users share some
unencrypted information with the cloud server. In this section,
we analyze the potential security risks of sharing these in-
formation. The first piece of unencrypted shared information
(USI) is the section information, which is used to identify PR
and user pair (U

i

, U
j

) for distance measurement. The disclosed
section information is a tradeoff for computational efficiency
and privacy. Intuitively, if the section size is large, the exact
location of a user remains well protected. As discussed pre-
viously, the section size is an important factor influencing the
privacy of SPRIDE. The investigation of a proper section size
to balance efficiency and privacy is on our agenda.

The second piece of USI is x2
i

+y

2
i

(note that x
i

� 166, 000,
y

i

� 0), which is the squared sum of northing and easting
coordinates. As |500, 000 � x

i

| is the horizontal distance
between CM and the user, and y

i

is the vertical distance
between CM and the user, the privacy leakage of x

2
i

+ y

2
i

depends on the values of x

i

, y

i

. To quantify the privacy
leakage, we hypothetically regard x

i

as the horizontal distance.
Then, the value of

p
x

2
i

+ y

2
i

stands for the radius of a
circular area, and the user can be located on any point of
the circle. Note that x

i

is always a six-digit number as shown
in Section II-C, as a result,

p
x

2
i

+ y

2
i

is at least a six-digit
radius with circumference of at least 600km. Thus, even the
lower-bound probability of learning the exact location of a
user on the circle is tiny.

The third piece of USI is the scalar product: x
i

x

j

+ y

i

y

j

,
which represents a mixture of two location data. The disclosure
of scalar product also does not compromise the individual
user’s location privacy, since the two locations under consid-
eration are intertwined with each other in scalar product. As
for the encrypted information from users, the cloud server does
not possess the decryption capability without the private keys,
which are held only by the respective users.

The attackers eavesdropping the communications between
the users and the cloud server can only receive the same three
types of unencrypted information. They basically can only
gain the same knowledge as the cloud server. Also, without
knowing the private keys, sensitive location data enclosed in
the encrypted message will not be leaked to the attackers. In
step 5, user U

j

receives the encrypted location of U

i

, which
cannot be decrypted without the private key. On the other
hand, although U

i

owns the private key, he/she only receives
the encrypted product that contains no sensitive information.
Therefore, SPRIDE protects any user location from other
users.

In summary, we demonstrate that the cloud server and
outside attackers are not able to extract sensitive location
data. However, on the other hand, due to the nature of
SPRIDE system, the distance information is presented to both
cloud server and the attackers. Now, we evaluate the privacy
concerns brought by the distance disclosure. For the server,
by knowing the distance between any pair of users, it will be
difficult to guess the exact location of individual users. For
example, if U

i

and U

j

are separated by distance �, without
knowing the location of U

i

or U

j

, it is almost impossible to
guess the exact location of the other counterpart.
Location Triangulation: One potential security weakness in
SPRIDE is that distance measurement allows multiple collud-
ing parties to do location triangulation to pinpoint a specific
user’s location. Note that any distance measurement protocol
will be subject to colluding attacks [10]. In this paper, we do
not consider colluding attacks from malicious users, which is
an interesting research topic in its own right.

In case one end of distance measurement is known, the
adversaries might be able to pinpoint the location of the
other end. For example, if one end of distance measurement
is a river, by knowing the distance between a user and the
river, a determined adversary can pinpoint the location of
this user by examining the circular area with the specific
distance to the river on a map. Thus, instead of measuring
distance, we can design a distance comparison mechanism
to further strengthen location privacy by providing a coarse-
grained binary comparison output. The design of privacy-
preserving distance comparison mechanism will be our future
work.

D. Enhanced SPRIDE: Performance Enhancement of SPRIDE
Efficient Privacy-Preserving Distance Evaluation Using
Data Segmentation: The UTM location data contains easting
and northing coordinates, which are usually 6-7 digits. The
major computations of SPRIDE include Paillier encryption,

Operations 3-digits 4-digits 5-digits 6-digits 7-digits
Original Encryp-
tion 0.0329 0.0358 0.0367 0.0376 0.0387

Original
Homomorphic
Operations

0.043 0.525 3.46 80.9 207.4

Original Decryp-
tion 0.045 0.49 1.36 39.5 118.9

Original SPRIDE - - - - 533.6
Enhanced
SPRIDE - - - - 1.40

Table I: Time consumption breakdown for processing a single mes-
sage with different number of digits using original/enhanced SPRIDE
system (in ms)

Paillier decryption and the homomorphic operations. Accord-
ing to our experiments, the most time consuming computations
of Algorithm 1 are Step 5 (homomorphic operations) and Step
7 (Paillier decryption). Here, we use the key size of 1024
bits, which corresponds to the ciphertexts of 2048 bits. The
2048-bit ciphertext will be raised to the power of a 6 or 7
digits exponent, which consumes a considerable amount of
computational power. Moreover, the decryption of this huge
ciphertext is very computationally expensive. In our exper-
iment, we generate different lengths of messages to evaluate
the time costs of the encryption, decryption, and homomorphic
operations. For each time cost evaluation, we average the time
consumption performance over 10 runs with random messages.
We show the average time consumption breakdown in Table I,
where a significant portion of time is spent on homomorphic
operations and Paillier decryption. The experimental setting is
discussed in Section IV.

To improve the computational efficiency, we propose an
enhancement of SPRIDE. The basic idea is to segment the
UTM location data into single-digit data, and to perform
homomorphic operations over the single-digit exponent, the
results of which can be aggregated to form the expected
SPRIDE output.

Generally, x

i

is a six-digit number, and y

i

is a seven-
digit number. We first convert the easting coordinate into a
seven-digit number by adding a “0” in front of the original
coordinate. As an example, seven-digit UTM locations x

i

=
A1A2A3A4A5A6A7, y

i

= A

0
1A

0
2A

0
3A

0
4A

0
5A

0
6A

0
7 from U

i

and
x

j

= B1B2B3B4B5B6B7, y

j

= B

0
1B

0
2B

0
3B

0
4B

0
5B

0
6B

0
7 from

U

j

are segmented into seven single-digit data A

m

, A

0
m

, and
B

m

, B

0
m

, m 2 [1, 7], where A1 and B1 are “0”. Then, U
i

per-
forms Paillier encryption over these single-digit data, and U

j

computes Enc
pk

(A
m

)Bn , Enc
pk

(A0
m

)B
0
n , where m 2 [1, 7],

n 2 [1, 7]. There will be 72 = 49 values of Enc
pk

(A
m

)Bn

and Enc
pk

(A0
m

)B
0
n , while x

i

x

j

can be written as:

x

i

x

j

= (A1B110
12 +A1B210

11 + . . .+A1B710
6)

+ (A2B110
11 +A2B210

10 + . . .+A2B710
5)

+ . . .

+ (A7B110
6 +A7B210

5 + . . .+A7B7). (3)

Moreover, y

i

y

j

can be presented in a similar form. Homo-
morphic operation can be performed over these single-digit

data, for example, Enc
pk

(A
m

)Bn ⇤ Enc
pk

(A0
m

)B
0
n can be

decrypted into A

m

B

n

+A

0
m

B

0
n

, which can then be aggregated
and powered (with appropriate powers ranging from 100 to
1012) to compute x

i

x

j

+ y

i

y

j

.
One caveat of this approach is that: as A1 and B1 are

both 0, U

j

’s location privacy can be easily compromised.
For example, U

i

will receive Enc
pk

(A1)B2 ⇤Enc
pk

(A0
1)

B

0
2 in

Second Round, which is decrypted into A1B2+A

0
1B

0
2. In case

that A1 = 0, user U
i

can recover B0
2. Similarly, user U

i

is able
to retrieve B

0
1, B

0
2, . . . , B

0
7 for y

j

, as well as B1, B2, . . . , B7

for x
j

. To address this issue, we first lay out the components
containing A1 or B1 in the final result of x

i

x

j

+ y

i

y

j

:

A1B110
12 +A1B210

11 + . . .+A1B710
6

+A2B110
11 +A3B110

10 + . . .+A7B110
6
,

and the corresponding encrypted products are: Enc
pk

(A1)B1 ⇤
Enc

pk

(A0
1)

B

0
1
, . . . , Enc

pk

(A7)B1⇤Enc
pk

(A0
7)

B

0
1 , which will

lead to the leakage of U
j

’s location. Rather than computing the
above encrypted products, U

j

will compute additional products
to conceal U

j

’ locations, including: for instance,

Enc
pk

(A1)
B2 ⇤Enc

pk

(A0
1)

B

0
2 ⇤Enc

pk

(A2)
B1 ⇤Enc

pk

(A0
2)

B

0
1
,

Enc
pk

(A1)
B7 ⇤Enc

pk

(A0
1)

B

0
7 ⇤Enc

pk

(A7)
B1 ⇤Enc

pk

(A0
7)

B

0
1
,

which are decrypted into: A

0
1B

0
2 + A

0
2B

0
1, A

0
1B

0
3 + A

0
3B

0
1,

. . ., A

0
1B

0
7 + A

0
7B

0
1 (since A1, B1 = 0). In this case, with

two unknowns in each component (for instance, B0
1 and B

0
2),

user U

i

will not be able to retrieve U

j

’s location data from
the decrypted products. Now, the only missing component of
x

i

x

j

+ y

i

y

j

is: Enc
pk

(A1)B1 ⇤ Enc
pk

(A0
1)

B

0
1 , which is used

to compute A1B11012 + A

0
1B

0
110

12 (with A1B11012 = 0).
Recall that we have (A0

1B
0
2+A

0
2B

0
1)⇤1011 inside x

i

x

j

+y

i

y

j

.
To include the missing component is straightforward, U

j

simply computes: Enc
pk

(A1)B1⇤10 ⇤Enc
pk

(A0
1)

B

0
1⇤10, which

decrypts into: A1B1 ⇤10+A

0
1B

0
1 ⇤10. Then, U

j

can add them
into (A0

1B
0
2 +A

0
2B

0
1) ⇤ 1011, resulting in the computation of:

Enc
pk

(A1)
B2 ⇤ Enc

pk

(A0
2)

B

0
1 ⇤ Enc

pk

(A2)
B1⇤

Enc
pk

(A0
2)

B

0
1 ⇤ Enc

pk

(A1)
B1⇤10 ⇤ Enc

pk

(A0
1)

B

0
1⇤10

,

which decrypts into A1B
0
2 +A2B

0
1 +A

0
1 ⇤B0

1 ⇤ 10. After that,
the cloud can raise it into the power of 1011 for computing
x

i

x

j

+ y

i

y

j

.
To this end, the homomorphic operation now turns into 49

pairs of simple operations Enc
pk

(A
m

)Bn · Enc
pk

(A0
m

)B
0
n ,

where m 2 [1, 7], n 2 [1, 7]. Correspondingly, the Paillier
decryption results in A

m

B

n

+ A

0
m

B

0
n

. The cloud can use
Eq. (3) to recover x

i

x

j

+ y

i

y

j

. Essentially, this improved
algorithm converts a computation of a long-digit number into
multiple computations of a short-digit number. In this case, we
performed 49 pairs of simple homomorphic operations instead
of one pair of super-complex homomorphic operation. The
performance improvement is significant.

The computational time with/without the enhancement is
shown in Table I, where we can see a noteworthy performance

Algorithm 2: Distance Prediction Algorithm
1 Set prediction range r, prediction STD threshold �, error

bound err;
2 repeat
3 Take a continuous set of distance measurements with

cardinality equal to the prediction range r, including
d1, d2, . . . , dr;

4 Compute moving speed speed

i

= |d
i+1 � d

i

|,
i 2 [1, r � 1];

5 if std(speed
i

) < � then
6 repeat
7 Set r to 2r except the initial repeat round;
8 Enter prediction mode;
9 Predict a set of distance measurements with

cardinality equal to the prediction range r,
including d

0
r+1, d

0
r+2, . . . , d

0
2r, where

d

0
j

= d

0
j�1 +mean({speed

i

}), j 2 [r + 1, 2r],
i 2 [1, r � 1], d0

r

= d

r

;
10 Perform a distance measurement d2r for distance

verification;
11 until |d2r � d

0
2r| > err;

12 Exit prediction mode ;
13 until;

improvement brought by the enhancement scheme (improved
from 534ms to 1.40ms for processing a seven-digits message).
Reducing Computation/Communication Time using Dis-
tance Prediction: When the users are moving, distance mea-
surement among users needs to be carried out periodically
to allow app cloud server to keep track of users’ real-time
movement. In cases when the users are moving at a steady
speed relative to each other, we have the opportunity to
further reduce the distance computation costs using distance
prediction algorithm. The distance prediction algorithm aims
to reduce the distance measurement frequencies by captur-
ing moving statistics. SPRIDE enters the prediction mode
based on historic distance measurements, when a series of
distance measurements are predicted without any computa-
tions/communications, thereby conserving computational re-
sources and communication overhead. The complete distance
prediction algorithm is shown in Algorithm 2.

The number of distance measurement samples to determine
whether to enter prediction mode is denoted as prediction
range r. For instance, r continual samples are taken with a
sampling rate of 1 sample per 5 seconds, i.e., d1, d2, . . .,
d

r

. The entry to the prediction mode is determined by the
standard deviation of moving speed values measured inside
prediction range. When evaluating the distance between users
(or the distance between a user and a fixed PoI), the moving
(relative) speed can be calculated using the difference between
consecutive distance measurements, i.e. speed

i

= |d
i+1 � d

i

|,
i 2 [1, r � 1]. If the standard deviation std({speed

i

})
is less than a threshold, called prediction STD threshold �,
SPRIDE enters the prediction mode and predicts a prediction

range of distance measurements using an estimated speed
of mean({speed

i

}), generating d

0
r+1, d

0
r+2, . . ., d

0
2r. Im-

mediately after the distance prediction, we start a distance
verification by comparing the final predicted distance d

0
2r to

the real distance measurement d2r. If the error is less than
an error bound err, we continue the distance prediction;
otherwise, we exit the distance prediction and restart the whole
process.

Using distance prediction algorithm, not only can we save
computation/communication time spent on distance evaluation,
but we also allow the farming apps to sample locations less
frequently on resource-constrained sensors while preserving
the app functionality. Note that three parameters are involved
in the prediction including: prediction range r, prediction STD
threshold �, and error bound err, and we evaluate the perfor-
mance improvement w.r.t. these parameters in Section IV-D.

IV. EVALUATION

In this section, we evaluate the distance evaluation per-
formance of the SPRIDE system. Specifically, we first focus
on the runtime performance of SPRIDE system for distance
measurement between users and a fixed PoI, or among multiple
users, respectively. Note that the users denote farms, farmers,
sensors, or machines, depending on specific applications.
Then, we evaluate the performance improvement brought by
the distance prediction algorithm. Finally, overhead evaluation
is presented to show the applicability of SPRIDE system in
real-world applications. All the algorithms are implemented
in Java and run on a MacBook with 2.2GHz Intel Core i5
and 8GB memory, or Android Nexus 5 phones (only for
experiments in Section IV-E).

A. Datasets

As we cannot find real-world datasets of farming appli-
cations, we use a dataset, called Geolife dataset [19], from
mobile applications to evaluate SPRIDE, and we believe
the adopted geolocation dataset should be representative for
farming apps as well. Geolife data was collected from 182
users over a period of three years. It recorded a wide range of
users’ outdoor movements, represented by a series of tuples
containing latitude, longitude, and timestamp. The trajectories
were updated every 1 � 5 seconds. We randomly selected
trajectories from users inside the dataset to perform real-time
distance evaluation.

B. Runtime Performance for Distance Evaluation with a Fixed
Location

We implement the enhanced SPRIDE system using data
segmentation, and evaluate the performance of distance eval-
uation between users and a fixed PoI using Algorithm 1.
Recall that the user is responsible for Paillier encryption and
decryption, while the app cloud will perform homomorphic
operation. In our experiment, we assume the user and app
cloud have the same hardware configurations (i.e. MacBook).
We evaluate the total computation time of the users w.r.t.
the number of users involved in distance evaluation. We run

0

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800 900 1000

To
ta
l	R
un

ni
ng

	Ti
m
e	
(m

s)

Number	of	Users

(a)

0
200
400
600
800
1000
1200
1400
1600
1800

100 200 300 400 500 600 700 800 900 1000

To
ta
l	R
un

ni
ng

	Ti
m
e	
(m

s)

Number	of	User	Pairs	

(b)

Figure 2: (a). Total computation time for computing distance between
different number of users and a fixed PoI; (b). Total computation time
for computing distance between different user pairs

Method PLQP [20] PP-UTM [10] SPRIDE
Time (s) 741 27 1.6

Table II: Time cost for 1000 user pairs

experiments on a randomly selected set of users 10 times,
and compute the average total time consumption. The result
is shown in Fig. 2(a), which demonstrates a linear increase in
computation time with the increasing number of users. Using
the MacBook, the distance measurement with 1, 000 users
takes only about 1 second. Therefore, SPRIDE can support
the distance evaluation of a large number of users. As for the
network communication, both Algorithm 1 require two round-
trips between app cloud and users, the overhead of which is
shown in Section IV-E.

C. Runtime Performance for Distance Evaluation with Multi-
ple Farms

In real-world applications, the users on a farm update their
locations periodically, for instance, every five seconds. With
superior runtime performance, SPRIDE system can track and
update distance evaluation for a large number of users in real-
time, without compromising users’ location privacy. Next, we
evaluate the distance measurement for multiple users, where
U

i

is responsible for encryption and decryption, while U

j

per-
forms homomorphic operations. The total computation time is
evaluated w.r.t. the pairs of users. We randomly select pairs of
users, repeat the experiments for 10 times, and report average
time costs. The results are shown in Fig. 2(b). Similar to the
previous result, the total computation for 700 user pairs takes
around 1 second. Note that in this case, the cloud is merely
a message relay, who delegates most of the computations to
each individual user. Apparently, the app cloud is capable of
supporting a large user base.
Comparing with Other Methods: For comparison, we im-
plement two existing privacy-preserving distance measurement
methods: PLQP [20] and PP-UTM [10], both of which mea-
sure distance between a single pair of users using homomor-
phic encryption, and PP-UTM further computes distance over
UTM projection. Table II shows that SPRIDE achieves 463
times improvement over PLQP, and 17 times improvement
over PP-UTM in time consumption, which highlights the
scalability of SPRIDE system, making it particularly suitable

1
2
3
4
5
6
7
8
9

0

0.05

0.1

0.15

0.2

5 8 10 15 18 20
Error	Bound	 (Meter)

Saved	Time	Percentage Average	Error	(Meter)

(a) Saved time percentage vs. Error
bound (fixed PoI)

1.9
1.95
2
2.05
2.1
2.15
2.2
2.25
2.3

0

0.01

0.02

0.03

0.04

0.05

0.06

5 8 10 15 18 20
Prediction	Range

Saved	Time	Percentage Average	Error	(Meter)

(b) Saved time percentage vs. Predic-
tion range (fixed PoI)

1.95

2

2.05

2.1

2.15

0.048

0.05

0.052

0.054

0.056

0.058

10 12 15 18 20
Prediction	STD	Threshold

Saved	Time	Percentage Average	Error	(Meter)

(c) Saved time percentage vs. Predic-
tion STD threshold (fixed PoI)

1

3

5

7

9

11

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

5 8 10 15 18 20

Error	Bound	 (Meter)

Saved	Time	Percentage Average	Error	(Meter)

(d) Saved Time percentage vs. Error
bound (users)

Figure 3: Impact of parameters on performance improvement using distance prediction: (a)(b)(c) Impact of parameters on computation time
savings for fixed PoI distance evaluation; (d) Impact of error bound on computation time savings for distance evaluation.

Error Bound 5
Prediction Range 5

Prediction STD Threshold 10

Table III: Default parameter settings

for farming applications processing geolocation data from a
large set of farms.

D. Performance Improvement of Distance Prediction Algo-
rithm

Next, we evaluate the performance improvement by distance
prediction algorithm in terms of saved time percentage, which
is defined as the ratio of saved computation time to total com-
putation time. Since the performance may vary for different
users, we chose 200 trajectories from 200 users, each of which
has around 1, 000� 3, 000 timestamps to evaluate the average
performance improvement of distance prediction algorithm.
The default settings of the parameters are shown in Table III.
For the following experiments, we vary the value of one
parameter while retaining default values for other parameters if
not mentioned. The average performance is reported in Fig. 3.
The Impact of Error Bound: In Fig. 3(a), the saved time
percentage increases with larger error bound for distance
evaluation between a user and a fixed PoI. The result shows
that if we allow a large distance prediction error, we will
spend less time on distance computation. For instance, when
error bound is set as 10 meters, 10% of total computation
time can be saved. Meanwhile, the average prediction error
rises with increasing error bound. The app server can pick an
error bound to strike the balance between the computation time
savings and prediction errors. For distance evaluation between
users, performance improvement trend is similar as shown in
Fig. 3(d), but the saved time percentage is significantly less
than that of the fixed PoI case. The reduced time savings are
caused by the elevated difficulty in predicting distance between
two users. In fact, only when two users are moving with a
steady speed on the same direction, can we enter prediction
mode to predict their future distance, which accounts for less
time savings. Nevertheless, the time saving percentage can still
reach beyond 5% of total computation time when error bound
is set to 15 meters.

Ui ! Cloud Cloud ! Ui Uj ! Cloud Cloud ! Uj

1792 5376 5376 1792

Table IV: Communication overhead of enhanced SPRIDE (in Bytes)

The Impact of Prediction Range: The relationship be-
tween saved time percentage and prediction range is shown
in Fig. 3(b), which shows that time savings decline with
increasing prediction range. This is due to the increasing
difficulty in entering prediction mode. If we take more points
for prediction mode evaluation, we will have a higher chance
to encounter the moving statistic change, which translates into
a lower chance of entering prediction mode or reduced time
savings. In addition, the average prediction error is unaffected
by different prediction ranges. Here, we only show the result
of fixed PoI case, as the result of multiple user case is similar.
The Impact of Prediction STD Threshold: Higher prediction
STD threshold brings more time savings as shown in Fig. 3(c).
The reason is obvious, as it becomes easier to enter the pre-
diction mode with a higher prediction STD threshold. Average
prediction error does not seem to have any relationship with
prediction STD threshold.

E. Overhead Evaluation on Mobile Device
Since mobile device has constrained computation power,

we run the SPRIDE system on mobile devices to evaluate
the computation costs in real devices (Android Nexus 5).
Each mobile device participating in the distance evaluation
will perform Paillier encryption, decryption and homomorphic
operation. With enhanced SPRIDE, each distance evaluation
takes U

i

around 0.5ms for Paillier encryption and decryp-
tion, while it takes U

j

around 3ms for homomorphic op-
eration, which is acceptable. The communication overhead
is listed in Table IV, the total of which is less than 15
Kilobytes. In addition, using the distance prediction algorithm,
we significantly reduce the distance evaluation frequency and
computation/communication costs. Therefore, SPRIDE system
introduces low overhead, and can be applied in real-world
privacy-preserving farming applications on mobile devices.

V. RELATED WORK

A rich set of existing work has been developed to address
the problem of location privacy in location based services.

In this section, we discuss additional relevant work that has
not been covered. Location obfuscation is a prevalent non-
cryptographic technique to protect location privacy. It can be
done entirely on the user’s side by perturbing the location
coordinates [4]. Several location obfuscation techniques add
noise to the users’ location coordinates [21], hide the real
location among a set of dummy locations [22], or use cloaking
algorithm to conceal real location [23]. Privacy-preserving
proximity test has been widely studied. InnerCircle [12] is
a proximity protocol based on homomorphic cryptosystem.
Freni et al. [24] propose to provide a course granularity of
location data to protect location privacy, while Mascetti et
al. [25] extends this work to a centralized scenario. Differ-
ent from the previous work, SPRIDE is a practical system
that tracks geo-distances continuously on earth for precision
farming, rather than proximity test.

Other approaches generate fake locations to hide users’ true
locations, by constructing fake trips with more probable paths
traveled by drivers [26]. Chen et al. [27] presented a privacy-
preserving map generation using crowd-sourced location data,
which lets users upload unorganized sparse location points to
avoid privacy leakage. Recently, Sedenka et al. [10] homomor-
phically compute the distance using UTM projection, ECEF
(Earth-Centered Earth-Fixed) coordinates, and Haversine for-
mula, which is the most relevant work to ours. However, they
only consider a one-time distance computation for two users,
while we focus on continuous distance tracking for multiple
users in a scalable manner. With performance enhancement,
our system consumes less resources.

VI. CONCLUSION

In this paper, we designed a scalable and private continual
geo-distance evaluation system, SPRIDE, to tackle the location
privacy issue for the first time in precision agriculture. SPRIDE
leverages homomorphic cryptosystem to perform distance
evaluation on user-encrypted location data. During the distance
evaluations, the geolocations are protected against other farms,
app cloud and external adversaries. We further enhanced the
performance of the real-time distance evaluation using data
segmentation and distance prediction techniques. We showed
through experiments with a real-world dataset that SPRIDE
can process a large number of farms’ encrypted locations to
provide geographic applications based on distance evaluations
in real-time.

REFERENCES

[1] R. Gebbers and V. I. Adamchuk, “Precision agriculture and food
security,” Science, vol. 327, no. 5967, pp. 828–831, 2010.

[2] Esri, “Gis for sustainable agriculture,” GIS Best Practices. New York:
ESRI Publications, 2008.

[3] J. L. Ferris, “Data privacy and protection in the agriculture industry:
Is federal regulation necessary?” Minnesota Journal of Law, Science &
Technology, vol. 18, no. 1, 2017.

[4] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux,
“Quantifying location privacy,” in Proceedings of the 2011 IEEE Sym-
posium on Security and Privacy, ser. SP ’11, 2011, pp. 247–262.

[5] informationisbeautiful, “World’s biggest data breaches,”
http://www.informationisbeautiful.net/visualizations/
worlds-biggest-data-breaches-hacks/, Accessed at July 9, 2016.

[6] J. Krumm, “A survey of computational location privacy,” Personal and
Ubiquitous Computing, vol. 13, no. 6, pp. 391–399, 2009.

[7] Y. Xiao and L. Xiong, “Protecting locations with differential privacy
under temporal correlations,” in Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15,
2015, pp. 1298–1309.

[8] J. V. Stafford, “Implementing precision agriculture in the 21st century,”
Journal of Agricultural Engineering Research, vol. 76, no. 3, pp. 267 –
275, 2000.

[9] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh,
“Location privacy via private proximity testing,” 2011.

[10] J. Šeděnka and P. Gasti, “Privacy-preserving distance computation and
proximity testing on earth, done right,” in Proceedings of the 9th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIACCS ’14, 2014, pp. 99–110.

[11] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, lester and pierre:
Three protocols for location privacy,” in Proceedings of the 7th Inter-
national Conference on Privacy Enhancing Technologies, ser. PET’07,
2007, pp. 62–76.

[12] P. Hallgren, M. Ochoa, and A. Sabelfeld, “Innercircle: A parallelizable
decentralized privacy-preserving location proximity protocol,” in 2015
13th Annual Conference on Privacy, Security and Trust (PST), July 2015,
pp. 1–6.

[13] TOR, “Tor project,” https://www.torproject.org/, Accessed at July 9,
2016.

[14] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford, CA, USA, 2009.

[15] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop, ser. CCSW ’11, 2011, pp. 113–
124.

[16] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proceedings of the 17th International Conference
on Theory and Application of Cryptographic Techniques, ser. EURO-
CRYPT’99, 1999, pp. 223–238.

[17] Geokov, “UTM projection,” http://geokov.com/education/utm.aspx, Ac-
cessed at July 9, 2016.

[18] C. F. F. Karney, “Transverse mercator with an accuracy of a few
nanometers,” Journal of Geodesy, vol. 85, no. 8, pp. 475–485, 2011.

[19] Y. Zheng, X. Xie, and W.-Y. Ma, “Geolife: A collaborative social net-
working service among user, location and trajectory,” IEEE Data(base)
Engineering Bulletin, June 2010.

[20] X. Y. Li and T. Jung, “Search me if you can: Privacy-preserving location
query service,” in Prof. of IEEE INFOCOM 2013, April 2013, pp. 2760–
2768.

[21] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: Differential privacy for location-based sys-
tems,” in Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, ser. CCS ’13, 2013, pp. 901–914.

[22] H. Kido, Y. Yanagisawa, and T. Satoh, “Protection of location privacy
using dummies for location-based services,” in 21st International Con-
ference on Data Engineering Workshops, April 2005, pp. 1248–1248.

[23] C.-Y. Chow, M. F. Mokbel, and X. Liu, “A peer-to-peer spatial cloaking
algorithm for anonymous location-based service,” in Proceedings of the
14th Annual ACM International Symposium on Advances in Geographic
Information Systems, ser. GIS ’06, 2006, pp. 171–178.

[24] D. Freni, C. Ruiz Vicente, S. Mascetti, C. Bettini, and C. S. Jensen,
“Preserving location and absence privacy in geo-social networks,” in
Proceedings of the 19th ACM International Conference on Information
and Knowledge Management, ser. CIKM ’10, 2010, pp. 309–318.

[25] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia, “Privacy
in geo-social networks: Proximity notification with untrusted service
providers and curious buddies,” The VLDB Journal, vol. 20, no. 4, pp.
541–566, Aug 2011.

[26] J. Krumm, Realistic Driving Trips For Location Privacy. Springer
Berlin Heidelberg, 2009, pp. 25–41.

[27] X. Chen, X. Wu, X. Y. Li, Y. He, and Y. Liu, “Privacy-preserving high-
quality map generation with participatory sensing,” in Proc. of IEEE
INFOCOM 2014, April 2014, pp. 2310–2318.

